Wikipedia

Dimethylglyoxime

Also found in: Dictionary, Acronyms, Encyclopedia.
Dimethylglyoxime
Dimethylglyoxime
Dimethylglyoxime-3D-balls.png
Names
IUPAC name
N,N′-Dihydroxy-2,3-butanediimine
Other names
  • Dimethylglyoxime
  • Diacetyl dioxime
  • Butane-2,3-dioxime
  • Chugaev's reagent
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.002.201 Edit this at Wikidata
EC Number
  • 202-420-1
RTECS number
  • EK2975000
UNII
CompTox Dashboard (EPA)
Properties
C4H8N2O2
Molar mass 116.120 g·mol−1
Appearance White/Off White Powder
Density 1.37 g/cm3
Melting point 240 to 241 °C (464 to 466 °F; 513 to 514 K)
Boiling point decomposes
low
Structure
0
Hazards
Main hazards Toxic, Skin/Eye Irritant
Safety data sheet External MSDS
GHS pictograms GHS02: FlammableGHS06: Toxic
GHS Signal word Danger
GHS hazard statements
H228, H301
GHS precautionary statements
P210, P240, P241, P264, P270, P280, P301+310, P321, P330, P370+378, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamond
2
Related compounds
Related compounds
Hydroxylamine
salicylaldoxime
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dimethylglyoxime is a chemical compound described by the formula CH3C(NOH)C(NOH)CH3. Its abbreviation is dmgH2 for neutral form, and dmgH for anionic form, where H stands for hydrogen. This colourless solid is the dioxime derivative of the diketone butane-2,3-dione (also known as diacetyl). DmgH2 is used in the analysis of palladium or nickel. Its coordination complexes are of theoretical interest as models for enzymes and as catalysts. Many related ligands can be prepared from other diketones, e.g. benzil.

Preparation

Dimethylglyoxime can be prepared from butanone first by reaction with ethyl nitrite to give biacetyl monoxime. The second oxime is installed using sodium hydroxylamine monosulfonate:[1]

Preparation of dimethylglyoxime.png

Complexes

Dimethylglyoxime forms complexes with metals including Nickel,[2] Palladium, and Cobalt.[3] These complexes are used to separate those cations from solutions of metal salts. It is also used in precious metals refining to precipitate palladium from solutions of palladium chloride.

References

  1. ^ Semon, W. L.; Damerell, V. R. (1930). "Dimethylglyoxime". Organic Syntheses. 10: 22. doi:10.15227/orgsyn.010.0022.
  2. ^ Lev Tschugaeff (1905). "Über ein neues, empfindliches Reagens auf Nickel". Berichte der Deutschen Chemischen Gesellschaft. 38 (3): 2520–2522. doi:10.1002/cber.19050380317.
  3. ^ Girolami, G. S.; Rauchfuss, T.B.; Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual (3rd ed.). pp. 213–215.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.