Wikipedia

Hypotrochoid

Also found in: Dictionary, Encyclopedia.
The red curve is a hypotrochoid drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = 3, d = 5).

A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

The parametric equations for a hypotrochoid are:[1]

where is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because is not the polar angle). When measured in radian, takes values from to where LCM is least common multiple.

Special cases include the hypocycloid with d = r is a line or flat ellipse and the ellipse with R = 2r and d > r or d < r (d is not equal to r).[2] (see Tusi couple).

The ellipse (drawn in red) may be expressed as a special case of the hypotrochoid, with R = 2r (Tusi couple); here R = 10, r = 5, d = 1.

The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.

Hypotrochoids describe the support of the eigenvalues of some random matrices with cyclic correlations[3]

See also

References

  1. ^ J. Dennis Lawrence (1972). A catalog of special plane curves. Dover Publications. pp. 165–168. ISBN 0-486-60288-5.
  2. ^ Gray, Alfred. Modern Differential Geometry of Curves and Surfaces with Mathematica (Second ed.). CRC Press. p. 906. ISBN 9780849371646.
  3. ^ Aceituno, Pau Vilimelis; Rogers, Tim; Schomerus, Henning (2019-07-16). "Universal hypotrochoidic law for random matrices with cyclic correlations". Physical Review E. 100 (1): 010302. doi:10.1103/PhysRevE.100.010302.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.