Wikipedia

Hyperrectangle

Hyperrectangle
n-orthotope
Rectangular cuboid
A rectangular cuboid is a 3-orthotope
Type Prism
Facets 2n
Vertices 2n
Schläfli symbol {} × {} ... × {}[1]
Coxeter-Dynkin diagram CDel node 1.pngCDel 2.pngCDel node 1.png ... CDel node 1.png
Symmetry group [2n−1], order 2n
Dual Rectangular n-fusil
Properties convex, zonohedron, isogonal

In geometry, an n-orthotope[2] (also called a hyperrectangle or a box) is the generalization of a rectangle for higher dimensions, formally defined as the Cartesian product of intervals.

Types

A three-dimensional orthotope is also called a right rectangular prism, rectangular cuboid, or rectangular parallelepiped.

A special case of an n-orthotope, where all edges are equal length, is the n-cube.[2]

By analogy, the term "hyperrectangle" or "box" refers to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.[3]

Dual polytope

n-fusil
Rectangular fusil
Example: 3-fusil
Facets 2n
Vertices 2n
Schläfli symbol {} + {} + ... + {}
Coxeter-Dynkin diagram CDel node 1.pngCDel sum.pngCDel node 1.pngCDel sum.png ... CDel sum.pngCDel node 1.png
Symmetry group [2n−1], order 2n
Dual n-orthotope
Properties convex, isotopal

The dual polytope of an n-orthotope has been variously called a rectangular n-orthoplex, rhombic n-fusil, or n-lozenge. It is constructed by 2n points located in the center of the orthotope rectangular faces.

An n-fusil's Schläfli symbol can be represented by a sum of n orthogonal line segments: { } + { } + ... + { }.

A 1-fusil is a line segment. A 2-fusil is a rhombus. Its plane cross selections in all pairs of axes are rhombi.

n Example image
1 Cross graph 1.svg
{ }
CDel node 1.png
2 Rhombus (polygon).png
{ } + { }
CDel node 1.pngCDel sum.pngCDel node 1.png
3 Dual orthotope-orthoplex.svg
Rhombic 3-orthoplex inside 3-orthotope
{ } + { } + { }
CDel node 1.pngCDel sum.pngCDel node 1.pngCDel sum.pngCDel node 1.png

See also

Notes

  1. ^ N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite symmetry groups, 11.5 Spherical Coxeter groups, p.251
  2. ^ a b Coxeter, 1973
  3. ^ See e.g. Zhang, Yi; Munagala, Kamesh; Yang, Jun (2011), "Storing matrices on disk: Theory and practice revisited" (PDF), Proc. VLDB, 4 (11): 1075–1086.

References

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.