Wikipedia

Bochner's formula

In mathematics, Bochner's formula is a statement relating harmonic functions on a Riemannian manifold to the Ricci curvature. The formula is named after the American mathematician Salomon Bochner.

Formal statement

If is a smooth function, then

,

where is the gradient of with respect to and is the Ricci curvature tensor.[1] If is harmonic (i.e., , where is the Laplacian with respect to the metric ), Bochner's formula becomes

.

Bochner used this formula to prove the Bochner vanishing theorem.

As a corollary, if is a Riemannian manifold without boundary and is a smooth, compactly supported function, then

.

This immediately follows from the first identity, observing that the integral of the left-hand side vanishes (by the divergence theorem) and integrating by parts the first term on the right-hand side.

Variations and generalizations

References

  1. ^ Chow, Bennett; Lu, Peng; Ni, Lei (2006), Hamilton's Ricci flow, Graduate Studies in Mathematics, 77, Providence, RI: Science Press, New York, p. 19, ISBN 978-0-8218-4231-7, MR 2274812.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.