Wikipedia

Isocline

Also found in: Dictionary, Medical, Encyclopedia.
(redirected from isoclinal)
Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy.

Given a family of curves, assumed to be differentiable, an isocline for that family is formed by the set of points at which some member of the family attains a given slope. The word comes from the Greek words ἴσος (isos), meaning "same", and the κλίνειν, meaning "make to slope". Generally, an isocline will itself have the shape of a curve or the union of a small number of curves.

Isoclines are often used as a graphical method of solving ordinary differential equations. In an equation of the form y' = f(x, y), the isoclines are lines in the (x, y) plane obtained by setting f(x, y) equal to a constant. This gives a series of lines (for different constants) along which the solution curves have the same gradient. By calculating this gradient for each isocline, the slope field can be visualised; making it relatively easy to sketch approximate solution curves; as in fig. 1.

Other uses

In population dynamics, the term "isocline" refers to the set of population sizes at which the rate of change for one population in a pair of interacting populations is zero.[1]

References

  1. ^ "INTERSPECIFIC COMPETITION: LOTKA-VOLTERRA". Retrieved 6 March 2019.
  • Hanski, I. (1999) Metapopulation Ecology. Oxford University Press, Oxford, pp. 43–46.
  • Mathworld: Isocline
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.