Wikipedia

Zariski surface

In algebraic geometry, a branch of mathematics, a Zariski surface is a surface over a field of characteristic p > 0 such that there is a dominant inseparable map of degree p from the projective plane to the surface. In particular, all Zariski surfaces are unirational. They were named by Piotr Blass in 1977 after Oscar Zariski who used them in 1958 to give examples of unirational surfaces in characteristic p > 0 that are not rational. (In characteristic 0 by contrast, Castelnuovo's theorem implies that all unirational surfaces are rational.)

Zariski surfaces are birational to surfaces in affine 3-space A3 defined by irreducible polynomials of the form

The following problem was posed by Oscar Zariski in 1971: Let S be a Zariski surface with vanishing geometric genus. Is S necessarily a rational surface? For p = 2 and for p = 3 the answer to the above problem is negative as shown in 1977 by Piotr Blass in his University of Michigan Ph.D. thesis and by William E. Lang in his Harvard Ph.D. thesis in 1978. Kentaro Mitsui (2014) announced further examples giving a negative answer to Zariski's question in every characteristic p>0 . His method however is non constructive at the moment and we do not have explicit equations for p>3.

See also

References

  • Blass, Piotr; Lang, Jeffrey (1987), Zariski surfaces and differential equations in characteristic p>0, Monographs and Textbooks in Pure and Applied Mathematics, 106, New York: Marcel Dekker Inc., ISBN 978-0-8247-7637-4, MR 0879599
  • Mitsui, Kentaro (2014), "On a question of Zariski on Zariski surfaces", Math. Z., 276 (1–2): 237–242, doi:10.1007/s00209-013-1195-0, MR 3150201
  • Zariski, Oscar (1958), "On Castelnuovo's criterion of rationality pa=P2=0 of an algebraic surface", Illinois Journal of Mathematics, 2: 303–315, ISSN 0019-2082, MR 0099990
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.