Wikipedia

X and Y bosons

Also found in: Encyclopedia.
X± and Y± bosons
CompositionElementary particle
StatisticsBosonic
StatusHypothetical
Types12
Mass≈ 1015 GeV/c2
Decays intoX: two quarks, or one antiquark and one charged antilepton
Y: two quarks, or one antiquark and one charged antilepton, or one antiquark and one antineutrino
Electric chargeX: ±4/3 e
Y: ±1/3 e
Color chargetriplet or antitriplet
Spin1
Spin states3
Weak isospin projectionX: ±1/2
Y: ∓1/2
Weak hypercharge±5/6
BL±2/3
X0

In particle physics, the X and Y bosons (sometimes collectively called "X bosons"[1]:437) are hypothetical elementary particles analogous to the W and Z bosons, but corresponding to a new type of force predicted by the Georgi–Glashow model, a grand unified theory.

Details

The X and Y bosons couple quarks to leptons (such as a positron), allowing violation of the conservation of baryon number, and thus permitting proton decay.

An X boson would have the following decay modes:[1]:442


X
+
u
+
u

X
+
e+
+
d

where the two decay products in each process have opposite chirality,
u
is an up quark,
d
is a down antiquark and
e+
is a positron.

A Y boson would have the following decay modes:[1]:442


Y
+
e+
+
u

Y
+
d
+
u

Y
+
d
+
ν
e

where the first decay product in each process has left-handed chirality and the second has right-handed chirality and
ν
e
is an electron antineutrino. Similar decay products exist for the other quark-lepton generations.

In these reactions, neither the lepton number (L) nor the baryon number (B) is conserved, but BL is. Different branching ratios between the X boson and its antiparticle (as is the case with the K-meson) would explain baryogenesis. For instance, if an
X
+/
X
pair is created out of energy, and they follow the two branches described above:
X
+
u
+
u
,
X

d
+
e
; re-grouping the result (
u
+
u
+
d
) +
e
=
p
+
e
shows it to be a hydrogen atom.

Origin

The X± and Y± bosons are defined respectively as the six Q = ± ​4&fras1;3 and the six Q = ± ​1&fras1;3 components of the final two terms of the adjoint 24 representation of SU(5) as it transforms under the standard model's group:

.

Thus, the positively-charged X and Y carry anti-color charges (equivalent to having two different color charges), while the negatively-charged X and Y carry normal color charges, and the signs of the Y bosons' weak isospins are always opposite the signs of their electric charges. In terms of their action on , X bosons rotate between a color index and the weak isospin-up index, while Y bosons rotate between a color index and the weak isospin-down index.

See also

References

  1. ^ a b c Ta-Pei Cheng; Ling-Fong Li (1983). Gauge Theory of Elementary Particle Physics. Oxford University Press. ISBN 0-19-851961-3.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.