Wikipedia

Von Zeipel theorem

In astrophysics, the von Zeipel theorem states that the radiative flux in a uniformly rotating star is proportional to the local effective gravity . Specifically,

where the luminosity and mass are evaluated on a surface of constant pressure . The effective temperature can then be found at a given colatitude from the local effective gravity:[1][2]

The theorem is named after Swedish astronomer Edvard Hugo von Zeipel.

According to the theory of rotating stars,[3] if the rotational velocity of a star depends only on the radius, it cannot simultaneously be in thermal and hydrostatic equilibrium. This is called the von Zeipel paradox. The paradox is resolved, however, if the rotational velocity also depends on height, or there is a meridional circulation. A similar situation may arise in accretion disks.[4]

References

  1. ^ Zeipel, Edvard Hugo von (1924). "The radiative equilibrium of a rotating system of gaseous masses". Monthly Notices of the Royal Astronomical Society. 84 (9): 665–719. Bibcode:1924MNRAS..84..665V. doi:10.1093/mnras/84.9.665.
  2. ^ Maeder, André (1999). "Stellar evolution with rotation IV: von Zeipel's theorem and anistropic losses of mass and angular momentum". Astronomy and Astrophysics. 347: 185–193. Bibcode:1999A&A...347..185M.
  3. ^ Tassoul, J.-L. (1978). Theory of Rotating Stars. Princeton: Princeton Univ. Press.
  4. ^ Kley, W.; Lin, D. N. C. (1998). "Two-Dimensional Viscous Accretion Disk Models. I. On Meridional Circulations In Radiative Regions". The Astrophysical Journal. 397: 600–612. Bibcode:1992ApJ...397..600K. doi:10.1086/171818.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.