Wikipedia

Velocity potential

Also found in: Encyclopedia.

A velocity potential is a scalar potential used in potential flow theory. It was introduced by Joseph-Louis Lagrange in 1788.[1]

It is used in continuum mechanics, when a continuum occupies a simply-connected region and is irrotational. In such a case,

where u denotes the flow velocity. As a result, u can be represented as the gradient of a scalar function Φ:

Φ is known as a velocity potential for u.

A velocity potential is not unique. If Φ is a velocity potential, then Φ + a(t) is also a velocity potential for u, where a(t) is a scalar function of time and can be constant. In other words, velocity potentials are unique up to a constant, or a function solely of the temporal variable.

If a velocity potential satisfies Laplace equation, the flow is incompressible; one can check this statement by, for instance, developing ∇ × (∇ × u) and using, thanks to the Clairaut-Schwarz's theorem, the commutation between the gradient and the laplacian operators.

Unlike a stream function, a velocity potential can exist in three-dimensional flow.

Usage in acoustics

In theoretical acoustics,[2] it is often desirable to work with the acoustic wave equation of the velocity potential Φ instead of pressure p and/or particle velocity u.

Solving the wave equation for either p field or u field does not necessarily provide a simple answer for the other field. On the other hand, when Φ is solved for, not only is u found as given above, but p is also easily found—from the (linearised) Bernoulli equation for irrotational and unsteady flow—as

Notes

  1. ^ Anderson, John (1998). A History of Aerodynamics. Cambridge University Press. ISBN 978-0521669559.
  2. ^ Pierce, A. D. (1994). Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America. ISBN 978-0883186121.

See also

External links


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.