Wikipedia

Tsallis statistics

The term Tsallis statistics usually refers to the collection of mathematical functions and associated probability distributions that were originated by Constantino Tsallis. Using that collection, it is possible to derive Tsallis distributions from the optimization of the Tsallis entropic form. A continuous real parameter q can be used to adjust the distributions, so that distributions which have properties intermediate to that of Gaussian and Lévy distributions can be created. The parameter q represents the degree of non-extensivity of the distribution. Tsallis statistics are useful for characterising complex, anomalous diffusion.

Tsallis functions

The q-deformed exponential and logarithmic functions were first introduced in Tsallis statistics in 1994.[1] However, the q-deformation is the Box-Cox transformation for , proposed by George Box and David Cox in 1964.[2]

q-exponential

The q-exponential is a deformation of the exponential function using the real parameter q.[3]

Note that the q-exponential in Tsallis statistics is different from a version used elsewhere.

q-logarithm

The q-logarithm is the inverse of q-exponential and a deformation of the logarithm using the real parameter q.[3]

Inverses

These functions have the property that

Analysis

The limits of the above expression can be understood by considering for the exponential function and for the logarithm.

See also

  • Tsallis entropy
  • Tsallis distribution
  • q-Gaussian
  • q-exponential distribution
  • q-Weibull distribution

References

  1. ^ Tsallis, Constantino (1994). "What are the numbers that experiments provide?". Quimica Nova. 17: 468.
  2. ^ Box, George E. P.; Cox, D. R. (1964). "An analysis of transformations". Journal of the Royal Statistical Society, Series B. 26 (2): 211–252. JSTOR 2984418. MR 0192611.
  3. ^ a b Umarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008). "On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics" (PDF). Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725. Retrieved 2011-07-27.
  • S. Abe, A.K. Rajagopal (2003). Letters, Science (11 April 2003), Vol. 300, issue 5617, 249–251. doi:10.1126/science.300.5617.249d
  • S. Abe, Y. Okamoto, Eds. (2001) Nonextensive Statistical Mechanics and its Applications. Springer-Verlag. ISBN 978-3-540-41208-3
  • G. Kaniadakis, M. Lissia, A. Rapisarda, Eds. (2002) "Special Issue on Nonextensive Thermodynamics and Physical Applications." Physica A 305, 1/2.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.