Wikipedia

Total ring of fractions

(redirected from Total quotient ring)

In abstract algebra, the total quotient ring,[1] or total ring of fractions,[2] is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.

Definition

Let be a commutative ring and let be the set of elements which are not zero divisors in ; then is a multiplicatively closed set. Hence we may localize the ring at the set to obtain the total quotient ring .

If is a domain, then and the total quotient ring is the same as the field of fractions. This justifies the notation , which is sometimes used for the field of fractions as well, since there is no ambiguity in the case of a domain.

Since in the construction contains no zero divisors, the natural map is injective, so the total quotient ring is an extension of .

Examples

  • For a product ring A × B, the total quotient ring Q(A × B) is the product of total quotient rings Q(A) × Q(B). In particular, if A and B are integral domains, it is the product of quotient fields.
  • In an Artinian ring, all elements are units or zero divisors. Hence the set of non-zero divisors is the group of units of the ring, , and so . But since all these elements already have inverses, .
  • In a commutative von Neumann regular ring R, the same thing happens. Suppose a in R is not a zero divisor. Then in a von Neumann regular ring a = axa for some x in R, giving the equation a(xa − 1) = 0. Since a is not a zero divisor, xa = 1, showing a is a unit. Here again, .
  • In algebraic geometry one considers a sheaf of total quotient rings on a scheme, and this may be used to give one possible definition of a Cartier divisor.

The total ring of fractions of a reduced ring

There is an important fact:

Proposition — Let A be a Noetherian reduced ring with the minimal prime ideals . Then

Geometrically, is the Artinian scheme consisting (as a finite set) of the generic points of the irreducible components of .

Proof: Every element of Q(A) is either a unit or a zerodivisor. Thus, any proper ideal I of Q(A) must consist of zerodivisors. Since the set of zerodivisors of Q(A) is the union of the minimal prime ideals as Q(A) is reduced, by prime avoidance, I must be contained in some . Hence, the ideals are the maximal ideals of Q(A), whose intersection is zero. Thus, by the Chinese remainder theorem applied to Q(A), we have:

.

Finally, is the residue field of . Indeed, writing S for the multiplicatively closed set of non-zerodivisors, by the exactness of localization,

,

which is already a field and so must be .

Generalization

If is a commutative ring and is any multiplicatively closed set in , the localization can still be constructed, but the ring homomorphism from to might fail to be injective. For example, if , then is the trivial ring.

Citations

  1. ^ Matsumura 1980, p. 12.
  2. ^ Matsumura 1989, p. 21.

References

  • Matsumura, Hideyuki (1980), Commutative algebra
  • Matsumura, Hideyuki (1989), Commutative ring theory
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.