Wikipedia

Theorem of corresponding states

Also found in: Encyclopedia.

According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree.[1][2]

Material constants that vary for each type of material are eliminated, in a recast reduced form of a constitutive equation. The reduced variables are defined in terms of critical variables.

The principle originated with the work of Johannes Diderik van der Waals in about 1873[3] when he used the critical temperature and critical pressure to characterize a fluid.

The most prominent example is the van der Waals equation of state, the reduced form of which applies to all fluids.

Compressibility factor at the critical point

The compressibility factor at the critical point, which is defined as , where the subscript indicates the critical point, is predicted to be a constant independent of substance by many equations of state; the Van der Waals equation e.g. predicts a value of .

Where:

For example:

Substance [Pa] [K] [m3/kg]
H2O 21.817×106 647.3 3.154×10−3 0.23[4]
4He 0.226×106 5.2 14.43×10−3 0.31[4]
He 0.226×106 5.2 14.43×10−3 0.30[5]
H2 1.279×106 33.2 32.3×10−3 0.30[5]
Ne 2.73×106 44.5 2.066×10−3 0.29[5]
N2 3.354×106 126.2 3.2154×10−3 0.29[5]
Ar 4.861×106 150.7 1.883×10−3 0.29[5]
Xe 5.87×106 289.7 0.9049×10−3 0.29
O2 5.014×106 154.8 2.33×10−3 0.291
CO2 7.290×106 304.2 2.17×10−3 0.275
SO2 7.88×106 430.0 1.900×10−3 0.275
CH4 4.58×106 190.7 6.17×10−3 0.285
C3H8 4.21×106 370.0 4.425×10−3 0.267

See also

References

  1. ^ Tester, Jefferson W. & Modell, Michael (1997). Thermodynamics and its applications. Prentice Hall. ISBN 0-13-915356-X.
  2. ^ Çengel Y.A.; Boles M.A. (2007). Thermodynamics: An Engineering Approach (Sixth ed.). McGraw Hill. ISBN 9780071257718. page 141
  3. ^ A Four-Parameter Corresponding States Correlation for Fluid Compressibility Factors Archived 2007-03-17 at the Wayback Machine by Walter M. Kalback and Kenneth E. Starling, Chemical Engineering Department, University of Oklahoma.
  4. ^ a b Goodstein, David (1985) [1975]. "6" [Critical Phenomena and Phase Transitions]. States of Matter (1st ed.). Toronto, Ontario, Canada: General Publishing Company, Ltd. p. 452. ISBN 0-486-64927-X.
  5. ^ a b c d e de Boer, J. (April 1948). "Quantum theory of condensed permanent gases I the law of corresponding states". Physica. Utrecht, Netherlands: Elsevier. 14: 139–148. Bibcode:1948Phy....14..139D. doi:10.1016/0031-8914(48)90032-9.

External links



This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.