Wikipedia

Simplicial polytope

In geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a simplicial polyhedron in three dimensions contains only triangular faces[1] and corresponds via Steinitz's theorem to a maximal planar graph.

They are topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons.

Examples

Simplicial polyhedra include:

Simplicial tilings:

Simplicial 4-polytopes include:

  • convex regular 4-polytope
  • Dual convex uniform honeycombs:
    • Disphenoid tetrahedral honeycomb
    • Dual of cantitruncated cubic honeycomb
    • Dual of omnitruncated cubic honeycomb
    • Dual of cantitruncated alternated cubic honeycomb

Simplicial higher polytope families:

See also

Notes

  1. ^ Polyhedra, Peter R. Cromwell, 1997. (p.341)

References

  • Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press. ISBN 0-521-66405-5.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.