Wikipedia

Signature matrix

In mathematics, a signature matrix is a diagonal matrix whose diagonal elements are plus or minus 1, that is, any matrix of the form:[1]

Any such matrix is its own inverse, hence is an involutory matrix. It is consequently a square root of the identity matrix. Note however that not all square roots of the identity are signature matrices.

Noting that signature matrices are both symmetric and involutory, they are thus orthogonal. Consequently, any linear transformation corresponding to a signature matrix constitutes an isometry.

Geometrically, signature matrices represent a reflection in each of the axes corresponding to the negated rows or columns.

See also

References

  1. ^ Bapat, R. B. (2010), Graphs and matrices, Universitext, London: Springer, p. 40, doi:10.1007/978-1-84882-981-7, ISBN 978-1-84882-980-0, MR 2797201.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.