Wikipedia

Scoring algorithm

Scoring algorithm, also known as Fisher's scoring,[1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher.

Sketch of derivation

Let be random variables, independent and identically distributed with twice differentiable p.d.f. , and we wish to calculate the maximum likelihood estimator (M.L.E.) of . First, suppose we have a starting point for our algorithm , and consider a Taylor expansion of the score function, , about :

where

is the observed information matrix at . Now, setting , using that and rearranging gives us:

We therefore use the algorithm

and under certain regularity conditions, it can be shown that .

Fisher scoring

In practice, is usually replaced by , the Fisher information, thus giving us the Fisher Scoring Algorithm:

..

See also

References

  1. ^ Longford, Nicholas T. (1987). "A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects". Biometrika. 74 (4): 817–827. doi:10.1093/biomet/74.4.817.

Further reading

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.