Wikipedia

ScaLAPACK

The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK routines redesigned for distributed memory MIMD parallel computers. It is currently written in a Single-Program-Multiple-Data style using explicit message passing for interprocessor communication. It assumes matrices are laid out in a two-dimensional block cyclic decomposition.[1][2][3]

ScaLAPACK is designed for heterogeneous computing and is portable on any computer that supports MPI or PVM.

ScaLAPACK depends on PBLAS operations in the same way LAPACK depends on BLAS.

As of version 2.0 the code base directly includes PBLAS and BLACS and has dropped support for PVM.

Examples

  • Programming with Big Data in R fully utilizes ScaLAPACK and two-dimensional block cyclic decomposition for Big Data statistical analysis which is an extension to R.

References

  1. ^ J. Dongarra and D. Walker. "The Design of Linear Algebra Libraries for High Performance Computers".
  2. ^ J. Demmel, M. Heath, and H. van der Vorst. "Parallel Numerical Linear Algebra".
  3. ^ "2d block-cyclic data layout".

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.