Wikipedia

Riemann Xi function

Riemann xi function in the complex plane. The color of a point encodes the value of the function. Darker colors denote values closer to zero and hue encodes the value's argument.

In mathematics, the Riemann Xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann.

Definition

Riemann's original lower-case "xi"-function, was renamed with an upper-case (Greek letter "Xi") by Edmund Landau. Landau's lower-case ("xi") is defined as[1]

for . Here denotes the Riemann zeta function and is the Gamma function. The functional equation (or reflection formula) for Landau's is

Riemann's original function, rebaptised upper-case by Landau,[1] satisfies

,

and obeys the functional equation

Both functions are entire and purely real for real arguments.

Values

The general form for positive even integers is

where Bn denotes the n-th Bernoulli number. For example:

Series representations

The function has the series expansion

where

where the sum extends over ρ, the non-trivial zeros of the zeta function, in order of .

This expansion plays a particularly important role in Li's criterion, which states that the Riemann hypothesis is equivalent to having λn > 0 for all positive n.

Hadamard product

A simple infinite product expansion is

where ρ ranges over the roots of ξ.

To ensure convergence in the expansion, the product should be taken over "matching pairs" of zeroes, i.e., the factors for a pair of zeroes of the form ρ and 1−ρ should be grouped together.

References

  1. ^ a b Landau, Edmund (1974) [1909]. Handbuch der Lehre von der Verteilung der Primzahlen [Handbook of the Study of Distribution of the Prime Numbers] (Third ed.). New York: Chelsea. §70-71 and page 894.

Further references

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.