Wikipedia

Rectified 24-cell

Rectified 24-cell
Schlegel half-solid cantellated 16-cell.png
Schlegel diagram
8 of 24 cuboctahedral cells shown
Type Uniform 4-polytope
Schläfli symbols r{3,4,3} =
rr{3,3,4}=
r{31,1,1} =
Coxeter diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png or CDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
Cells 48 24 3.4.3.4 Cuboctahedron.png
24 4.4.4 Hexahedron.png
Faces 240 96 {3}
144 {4}
Edges 288
Vertices 96
Vertex figure Rectified 24-cell verf.pngCantellated 16-cell verf.pngRuncicantellated demitesseract verf.png
Triangular prism
Symmetry groups F4 [3,4,3], order 1152
B4 [3,3,4], order 384
D4 [31,1,1], order 192
Properties convex, edge-transitive
Uniform index 22 23 24

In geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra.[1]

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC24.

It can also be considered a cantellated 16-cell with the lower symmetries B4 = [3,3,4]. B4 would lead to a bicoloring of the cuboctahedral cells into 8 and 16 each. It is also called a runcicantellated demitesseract in a D4 symmetry, giving 3 colors of cells, 8 for each.

Construction

The rectified 24-cell can be derived from the 24-cell by the process of rectification: the 24-cell is truncated at the midpoints. The vertices become cubes, while the octahedra become cuboctahedra.

Cartesian coordinates

A rectified 24-cell having an edge length of 2 has vertices given by all permutations and sign permutations of the following Cartesian coordinates:

(0,1,1,2) [4!/2!×23 = 96 vertices]

The dual configuration with edge length 2 has all coordinate and sign permutations of:

(0,2,2,2) [4×23 = 32 vertices]
(1,1,1,3) [4×24 = 64 vertices]

Images

orthographic projections
Coxeter plane F4
Graph 24-cell t1 F4.svg
Dihedral symmetry [12]
Coxeter plane B3 / A2 (a) B3 / A2 (b)
Graph 24-cell t1 B3.svg 24-cell t2 B3.svg
Dihedral symmetry [6] [6]
Coxeter plane B4 B2 / A3
Graph 24-cell t1 B4.svg 24-cell t1 B2.svg
Dihedral symmetry [8] [4]
Stereographic projection
Rectified 24cell.png
Center of stereographic projection
with 96 triangular faces blue

Symmetry constructions

There are three different symmetry constructions of this polytope. The lowest construction can be doubled into by adding a mirror that maps the bifurcating nodes onto each other. can be mapped up to symmetry by adding two mirror that map all three end nodes together.

The vertex figure is a triangular prism, containing two cubes and three cuboctahedra. The three symmetries can be seen with 3 colored cuboctahedra in the lowest construction, and two colors (1:2 ratio) in , and all identical cuboctahedra in .

Coxeter group = [3,4,3] = [4,3,3] = [3,31,1]
Order 1152 384 192
Full
symmetry
group
[3,4,3] [4,3,3] <[3,31,1]> = [4,3,3]
[3[31,1,1]] = [3,4,3]
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
Facets 3: CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
2: CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
2,2: CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
2: CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
1,1,1: CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
2: CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Vertex figure Rectified 24-cell verf.png Cantellated 16-cell verf.png Runcicantellated demitesseract verf.png

Alternate names

  • Rectified 24-cell, Cantellated 16-cell (Norman Johnson)
  • Rectified icositetrachoron (Acronym rico) (George Olshevsky, Jonathan Bowers)
    • Cantellated hexadecachoron
  • Disicositetrachoron
  • Amboicositetrachoron (Neil Sloane & John Horton Conway)

Related polytopes

The convex hull of the rectified 24-cell and its dual (assuming that they are congruent) is a nonuniform polychoron composed of 192 cells: 48 cubes, 144 square antiprisms, and 192 vertices. Its vertex figure is a triangular bifrustum.

Related uniform polytopes

The rectified 24-cell can also be derived as a cantellated 16-cell:

Citations

  1. ^ Coxeter 1973, p. 154, §8.4.

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Model 23, George Olshevsky.
  • Klitzing, Richard. "4D uniform polytopes (polychora) o3x4o3o - rico".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell • 600-cell
Uniform 5-polytope 5-simplex 5-orthoplex • 5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex • 6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex • 7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex • 8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex • 9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex • 10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.