Wikipedia

Polynomial-time approximation scheme

Also found in: Acronyms.

In computer science, a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems).

A PTAS is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 and, in polynomial time, produces a solution that is within a factor 1 + ε of being optimal (or 1 − ε for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most (1 + ε)L, with L being the length of the shortest tour.[1] There exists also PTAS for the class of all dense constraint satisfaction problems (CSPs).[2]

The running time of a PTAS is required to be polynomial in n for every fixed ε but can be different for different ε. Thus an algorithm running in time O(n1/ε) or even O(nexp(1/ε)) counts as a PTAS.

Variants

Deterministic

A practical problem with PTAS algorithms is that the exponent of the polynomial could increase dramatically as ε shrinks, for example if the runtime is O(n(1/ε)!). One way of addressing this is to define the efficient polynomial-time approximation scheme or EPTAS, in which the running time is required to be O(nc) for a constant c independent of ε. This ensures that an increase in problem size has the same relative effect on runtime regardless of what ε is being used; however, the constant under the big-O can still depend on ε arbitrarily. Even more restrictive, and useful in practice, is the fully polynomial-time approximation scheme or FPTAS, which requires the algorithm to be polynomial in both the problem size n and 1/ε. All problems in FPTAS are fixed-parameter tractable with respect to the standard parameterization. For example, the knapsack problem admits an FPTAS.[3]

Any strongly NP-hard optimization problem with a polynomially bounded objective function cannot have an FPTAS unless P=NP.[4] However, the converse fails: e.g. if P does not equal NP, knapsack with two constraints is not strongly NP-hard, but has no FPTAS even when the optimal objective is polynomially bounded.[5]

Unless P = NP, it holds that FPTAS ⊊ PTAS ⊊ APX.[6] Consequently, under this assumption, APX-hard problems do not have PTASs.

Another deterministic variant of the PTAS is the quasi-polynomial-time approximation scheme or QPTAS. A QPTAS has time complexity for each fixed .

Randomized

Some problems which do not have a PTAS may admit a randomized algorithm with similar properties, a polynomial-time randomized approximation scheme or PRAS. A PRAS is an algorithm which takes an instance of an optimization or counting problem and a parameter ε > 0 and, in polynomial time, produces a solution that has a high probability of being within a factor ε of optimal. Conventionally, "high probability" means probability greater than 3/4, though as with most probabilistic complexity classes the definition is robust to variations in this exact value (the bare minimum requirement is generally greater than 1/2). Like a PTAS, a PRAS must have running time polynomial in n, but not necessarily in ε; with further restrictions on the running time in ε, one can define an efficient polynomial-time randomized approximation scheme or EPRAS similar to the EPTAS, and a fully polynomial-time randomized approximation scheme or FPRAS similar to the FPTAS.[4]

As a complexity class

The term PTAS may also be used to refer to the class of optimization problems that have a PTAS. PTAS is a subset of APX, and unless P = NP, it is a strict subset. [6]

Membership in PTAS can be shown using a PTAS reduction, L-reduction, or P-reduction, all of which preserve PTAS membership, and these may also be used to demonstrate PTAS-completeness. On the other hand, showing non-membership in PTAS (namely, the nonexistence of a PTAS), may be done by showing that the problem is APX-hard, after which the existence of a PTAS would show P = NP. APX-hardness is commonly shown via PTAS reduction or AP-reduction.

References

  1. ^ Sanjeev Arora, Polynomial-time Approximation Schemes for Euclidean TSP and other Geometric Problems, Journal of the ACM 45(5) 753–782, 1998.
  2. ^ Arora, S.; Karger, D.; Karpinski, M. (1999), "Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems", Journal of Computer and System Sciences, 58 (1): 193–210, doi:10.1006/jcss.1998.1605
  3. ^ Vazirani, Vijay (2001). Approximation algorithms. Berlin: Springer. pp. 69–70. ISBN 3540653678. OCLC 47097680.
  4. ^ a b Vazirani, Vijay V. (2003). Approximation Algorithms. Berlin: Springer. pp. 294–295. ISBN 3-540-65367-8.
  5. ^ H. Kellerer and U. Pferschy and D. Pisinger (2004). Knapsack Problems. Springer.
  6. ^ a b Jansen, Thomas (1998), "Introduction to the Theory of Complexity and Approximation Algorithms", in Mayr, Ernst W.; Prömel, Hans Jürgen; Steger, Angelika (eds.), Lectures on Proof Verification and Approximation Algorithms, Springer, pp. 5–28, doi:10.1007/BFb0053011, ISBN 9783540642015. See discussion following Definition 1.30 on p. 20.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.