Wikipedia

Phi-hiding assumption

The phi-hiding assumption or Φ-hiding assumption is an assumption about the difficulty of finding small factors of φ(m) where m is a number whose factorization is unknown, and φ is Euler's totient function. The security of many modern cryptosystems comes from the perceived difficulty of certain problems. Since P vs. NP problem is still unresolved, cryptographers cannot be sure computationally intractable problems exist. Cryptographers thus make assumptions as to which problems are hard. It is commonly believed that if m is the product of two large primes, then calculating φ(m) is currently computationally infeasible; this assumption is required for the security of the RSA Cryptosystem. The Φ-Hiding assumption is a stronger assumption, namely that if p1 and p2 are small primes exactly one of which divides φ(m), there is no polynomial-time algorithm which can distinguish which of the primes p1 and p2 divides φ(m) with probability significantly greater than one-half.

This assumption was first stated in the 1999 paper Computationally Private Information Retrieval with Polylogarithmic Communication,[1] where it was used in a Private Information Retrieval scheme.

Applications

The Phi-hiding assumption has found applications in the construction of a few cryptographic primitives. Some of the constructions include:

References

  1. ^ Cachin, Christian; Micali, Silvio; Stadler, Markus (1999). Stern, Jacques (ed.). "Computationally Private Information Retrieval with Polylogarithmic Communication". Lecture Notes in Computer Science. Springer. 1592: 402–414. doi:10.1007/3-540-48910-X. ISBN 978-3-540-65889-4. S2CID 29690672.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.