Wikipedia

Orthoester

Also found in: Encyclopedia.
The general formula of orthoesters.

In organic chemistry, an orthoester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR′)3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived. An example is ethyl orthoacetate, CH3C(OCH2CH3)3, more correctly known as 1,1,1-triethoxyethane. Orthoesters are used in organic synthesis as protecting groups for esters.

Synthesis

Orthoesters can be prepared by the Pinner reaction, in which nitriles react with alcohols under acid catalysis:

RCN + 3 R′OH → RC(OR′)3 + NH3

Reactions

Hydrolysis

Orthoesters are readily hydrolyzed in mild aqueous acid to form esters:

RC(OR′)3 + H2O → RCO2R′ + 2 R′OH

For example, trimethyl orthoformate CH(OCH3)3 may be hydrolyzed (under acidic conditions) to methyl formate and methanol;[1] and may be further hydrolyzed (under alkaline conditions) to salts of formic acid and methanol.[2]

Hydrolysis of methyl orthoformate to methyl formate

Johnson–Claisen rearrangement

The Johnson–Claisen rearrangement is the reaction of an allylic alcohol with an orthoester containing a deprotonatable alpha carbon (e.g. triethyl orthoacetate) to give a γ,δ-unsaturated ester.[3]

The Johnson–Claisen rearrangement

Bodroux–Chichibabin aldehyde synthesis

In the Bodroux–Chichibabin aldehyde synthesis an orthoester reacts with a Grignard reagent to form an aldehyde; this is an example of a formylation reaction.

Bodroux-Chichibabin aldehyde synthesis

Use

As a protecting group

OBO: 4-methyl-2,6,7-trioxa-bicyclo[2.2.2]octan-1-yl

Both trimethylorthoacetate and triethylorthoacetate are commonly used reagents in organic chemistry. Another example is the bicyclic OBO protecting group (4-methyl-2,6,7-trioxa-bicyclo[2.2.2]octan-1-yl) which is formed by the action of (3-methyloxetan-3-yl)methanol on activated carboxylic acids in the presence of Lewis acids and was developed by Elias James Corey. The group is base stable and can be cleaved in two steps under mild conditions, mildly acidic hydrolysis yields the ester of tris(hydroxymethyl)ethane which is then cleaved using e.g. an aqueous carbonate solution.[4]

In polymer chemistry

In polymer chemistry orthoesters are used in polyorthoesters and in expanding monomers.

See also

  • Acetal - C(OR)2R2
  • Orthocarbonate - C(OR)4.

References

  1. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart; Wothers, Peter (2001). Organic Chemistry (1st ed.). Oxford University Press. p. 345. ISBN 978-0-19-850346-0.
  2. ^ United States Patent Application 20070049501, Saini; Rajesh K.; and Savery; Karen, March 1, 2007
  3. ^ Johnson, William Summer.; Werthemann, Lucius.; Bartlett, William R.; Brocksom, Timothy J.; Li, Tsung-Tee.; Faulkner, D. John.; Petersen, Michael R. (February 1970). "Simple stereoselective version of the Claisen rearrangement leading to trans-trisubstituted olefinic bonds. Synthesis of squalene". Journal of the American Chemical Society. 92 (3): 741–743. doi:10.1021/ja00706a074.
  4. ^ Kocieński, Philip J. (2005). Protecting groups (3. ed.). Stuttgart: Thieme. ISBN 978-3-13-135603-1.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.