Wikipedia

Orthant

In two dimensions, there are 4 orthants (called quadrants)

In geometry, an orthant[1] or hyperoctant[2] is the analogue in n-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions.

In general an orthant in n-dimensions can be considered the intersection of n mutually orthogonal half-spaces. By independent selections of half-space signs, there are 2n orthants in n-dimensional space.

More specifically, a closed orthant in Rn is a subset defined by constraining each Cartesian coordinate to be nonnegative or nonpositive. Such a subset is defined by a system of inequalities:

ε1x1 ≥ 0      ε2x2 ≥ 0     · · ·     εnxn ≥ 0,

where each εi is +1 or −1.

Similarly, an open orthant in Rn is a subset defined by a system of strict inequalities

ε1x1 > 0      ε2x2 > 0     · · ·     εnxn > 0,

where each εi is +1 or −1.

By dimension:

  • In one dimension, an orthant is a ray.
  • In two dimensions, an orthant is a quadrant.
  • In three dimensions, an orthant is an octant.

John Conway defined the term n-orthoplex from orthant complex as a regular polytope in n-dimensions with 2n simplex facets, one per orthant.[3]

The nonnegative orthant is the generalization of the first quadrant to n-dimensions and is important in many constrained optimization problems.

See also

  • Cross polytope (or orthoplex) - a family of regular polytopes in n-dimensions which can be constructed with one simplex facets in each orthant space.
  • Measure polytope (or hypercube) - a family of regular polytopes in n-dimensions which can be constructed with one vertex in each orthant space.
  • Orthotope - Generalization of a rectangle in n-dimensions, with one vertex in each orthant.

Notes

  1. ^ Roman, Steven (2005). Advanced Linear Algebra (2nd ed.). New York: Springer. ISBN 0-387-24766-1.
  2. ^ Weisstein, Eric W. "Hyperoctant". MathWorld.
  3. ^ Conway, J. H.; Sloane, N. J. A. (1991). "The Cell Structures of Certain Lattices". In Hilton, P.; Hirzebruch, F.; Remmert, R. (eds.). Miscellanea Mathematica. Berlin: Springer. pp. 71–107. doi:10.1007/978-3-642-76709-8_5. ISBN 978-3-642-76711-1.
  • The facts on file: Geometry handbook, Catherine A. Gorini, 2003, ISBN 0-8160-4875-4, p.113
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.