Wikipedia

Octahemioctahedron

Octahemioctahedron
Octahemioctahedron.png
Type Uniform star polyhedron
Elements F = 12, E = 24
V = 12 (χ = 0)
Faces by sides 8{3}+4{6}
Wythoff symbol 3/2 3 | 3
Symmetry group Oh, [4,3], *432
Index references U03, C37, W68
Dual polyhedron Octahemioctacron
Vertex figure Octahemioctahedron vertfig.png
3.6.3/2.6
Bowers acronym Oho
3D model of an octahemioctahedron

In geometry, the octahemioctahedron or allelotetratetrahedron is a nonconvex uniform polyhedron, indexed as U3. It has 12 faces (8 triangles and 4 hexagons), 24 edges and 12 vertices.[1] Its vertex figure is a crossed quadrilateral.

It is one of nine hemipolyhedra, with 4 hexagonal faces passing through the model center.

Orientability

It is the only hemipolyhedron that is orientable, and the only uniform polyhedron with an Euler characteristic of zero (a topological torus).

Octahemioctahedron-labeled.png
Octahemioctahedron
Uniform map rectified 6-3 2-0.png
The topological net of faces can be arranged as a rhombus divided into 8 triangles and 4 hexagons. All vertex angle defects are zero.
Uniform map rectified 6-3 2-0-pattern.png
The net represents a region of the trihexagonal tiling plane.

Related polyhedra

It shares the vertex arrangement and edge arrangement with the cuboctahedron (having the triangular faces in common), and with the cubohemioctahedron (having the hexagonal faces in common).

By Wythoff construction it has tetrahedral symmetry (Td), like the rhombitetratetrahedron construction for the cuboctahedron, with alternate triangles with inverted orientations. Without alternating triangles, it has octahedral symmetry (Oh).

Cuboctahedron Cubohemioctahedron Octahemioctahedron
Octahedral symmetry Tetrahedral symmetry Octahedral symmetry Tetrahedral symmetry
Cuboctahedron.png Cantellated tetrahedron.png Cubohemioctahedron.png Octahemioctahedron.png Octahemioctahedron 3-color.png
2 | 3 4 3 3 | 2 4/3 4 | 3
(double cover)
3/2 3 | 3
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel nodes 11.pngCDel split2.pngCDel node.png CDel label4-3.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png CDel label3-2.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png

Octahemioctacron

Octahemioctacron
Hexahemioctacron.png
Type Star polyhedron
Face
Elements F = 12, E = 24
V = 12 (χ = 0)
Symmetry group Oh, [4,3], *432
Index references DU03
dual polyhedron Octahemioctahedron

The octahemioctacron is the dual of the octahemioctahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the hexahemioctacron.

Since the hemipolyhedra have faces passing through the center, the dual figures have corresponding vertices at infinity; properly, on the real projective plane at infinity.[2] In Magnus Wenninger's Dual Models, they are represented with intersecting prisms, each extending in both directions to the same vertex at infinity, in order to maintain symmetry. In practice the model prisms are cut off at a certain point that is convenient for the maker. Wenninger suggested these figures are members of a new class of stellation figures, called stellation to infinity. However, he also suggested that strictly speaking they are not polyhedra because their construction does not conform to the usual definitions.

The octahemioctacron has four vertices at infinity.

See also

  • Compound of five octahemioctahedra
  • Hemi-cube - The four vertices at infinity correspond directionally to the four vertices of this abstract polyhedron.

References

  1. ^ Maeder, Roman. "03: octahemioctahedron". MathConsult.
  2. ^ (Wenninger 2003, p. 101)

External links


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.