Wikipedia

Normal function

Also found in: Encyclopedia.

In axiomatic set theory, a function f : Ord → Ord is called normal (or a normal function) if and only if it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions:

  1. For every limit ordinal γ (i.e. γ is neither zero nor a successor), f(γ) = sup {f(ν) : ν < γ}.
  2. For all ordinals α < β, f(α) < f(β).

Examples

A simple normal function is given by f(α) = 1 + α (see ordinal arithmetic). But f(α) = α + 1 is not normal. If β is a fixed ordinal, then the functions f(α) = β + α, f(α) = β × α (for β ≥ 1), and f(α) = βα (for β ≥ 2) are all normal.

More important examples of normal functions are given by the aleph numbers which connect ordinal and cardinal numbers, and by the beth numbers .

Properties

If f is normal, then for any ordinal α,

f(α) ≥ α.[1]

Proof: If not, choose γ minimal such that f(γ) < γ. Since f is strictly monotonically increasing, f(f(γ)) < f(γ), contradicting minimality of γ.

Furthermore, for any non-empty set S of ordinals, we have

f(sup S) = sup f(S).

Proof: "≥" follows from the monotonicity of f and the definition of the supremum. For "≤", set δ = sup S and consider three cases:

  • if δ = 0, then S = {0} and sup f(S) = f(0);
  • if δ = ν + 1 is a successor, then there exists s in S with ν < s, so that δs. Therefore, f(δ) ≤ f(s), which implies f(δ) ≤ sup f(S);
  • if δ is a nonzero limit, pick any ν < δ, and an s in S such that ν < s (possible since δ = sup S). Therefore, f(ν) < f(s) so that f(ν) < sup f(S), yielding f(δ) = sup {f(ν) : ν < δ} ≤ sup f(S), as desired.

Every normal function f has arbitrarily large fixed points; see the fixed-point lemma for normal functions for a proof. One can create a normal function f'  : Ord → Ord, called the derivative of f, such that f' (α) is the α-th fixed point of f.[2]

Notes

  1. ^ Johnstone 1987, Exercise 6.9, p. 77
  2. ^ Johnstone 1987, Exercise 6.9, p. 77

References

  • Johnstone, Peter (1987), Notes on Logic and Set Theory, Cambridge University Press, ISBN 978-0-521-33692-5.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.