Wikipedia

Multivariate gamma function

In mathematics, the multivariate gamma function Γp is a generalization of the gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and inverse Wishart distributions, and the matrix variate beta distribution.[1]

It has two equivalent definitions. One is given as the following integral over the positive-definite real matrices:

where denotes the determinant of . Note that reduces to the ordinary gamma function. The other one, more useful to obtain a numerical result is:

From this, we have the recursive relationships:

Thus

and so on.

This can also be extended to non-integer values of p with the expression:

Where G is the Barnes G-function, the indefinite product of the Gamma function.

The function is derived by Anderson[2] from first principles who also cites earlier work by Wishart, Mahalabolis etc.

Derivatives

We may define the multivariate digamma function as

and the general polygamma function as

Calculation steps

  • Since
it follows that
it follows that

References

  1. ^ James, Alan T. (June 1964). "Distributions of Matrix Variates and Latent Roots Derived from Normal Samples". The Annals of Mathematical Statistics. 35 (2): 475–501. doi:10.1214/aoms/1177703550. ISSN 0003-4851.
  2. ^ Anderson, T W (1984). An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons. pp. Ch. 7. ISBN 0-471-88987-3.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.