Wikipedia

Minimax approximation algorithm

A minimax approximation algorithm (or L approximation or uniform approximation) is a method to find an approximation of a mathematical function that minimizes maximum error.[1][2]

For example, given a function defined on the interval and a degree bound , a minimax polynomial approximation algorithm will find a polynomial of degree at most to minimize

[3]

Polynomial approximations

The Weierstrass approximation theorem states that every continuous function defined on a closed interval [a,b] can be uniformly approximated as closely as desired by a polynomial function.[2] For practical work it is often desirable to minimize the maximum absolute or relative error of a polynomial fit for any given number of terms in an effort to reduce computational expense of repeated evaluation.

Polynomial expansions such as the Taylor series expansion are often convenient for theoretical work but less useful for practical applications. Truncated Chebyshev series, however, closely approximate the minimax polynomial.

One popular minimax approximation algorithm is the Remez algorithm.

External links

References

  1. ^ Muller, Jean-Michel; Brisebarre, Nicolas; de Dinechin, Florent; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien; Torres, Serge (2010). Handbook of Floating-Point Arithmetic (1 ed.). Birkhäuser. p. 376. doi:10.1007/978-0-8176-4705-6. ISBN 978-0-8176-4704-9. LCCN 2009939668.
  2. ^ a b Phillips, George M. (2003). "Best Approximation". Interpolation and Approximation by Polynomials. CMS Books in Mathematics. Springer. pp. 49–11. doi:10.1007/0-387-21682-0_2. ISBN 0-387-00215-4.
  3. ^ Powell, M. J. D. (1981). "7: The theory of minimax approximation". Approximation Theory and Methods. Cambridge University Press. ISBN 0521295149.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.