Wikipedia

Manganese(III) acetate

Manganese triacetate
Mn3O(OAc)6.png
Manganese(III) acetate dihydrate CAS 19513-05-4.jpg
Names
IUPAC name
Manganese triacetate
Other names
Manganese triacetate dihydrate; Manganese(III) acetate dihydrate, Manganic acetate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.365 Edit this at Wikidata
CompTox Dashboard (EPA)
Properties
Chemical formula
C6H9MnO6•2H2O
Molar mass 268.13 g/mol (dihydrate)
Appearance Brown powder
Density 1.049 g cm−3, liquid; 1.266 g cm−3, solid
Hazards
R-phrases (outdated) R36/37/38, R62, R63
S-phrases (outdated) S26, S37/39
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Manganese(III) acetate describes a family of materials with the approximate formula Mn(O2CCH3)3. These materials are brown solids that are soluble in acetic acid and water. They are used in organic synthesis as oxidizing agents.[1]

Structure

Although no true manganese(III) acetate is known, salts of basic manganese(III) acetate are well characterized. Basic manganese acetate adopts the structure reminiscent of those of basic chromium acetate and basic iron acetate. The formula is [Mn3O(O2CCH3)6Ln]X where L is a ligand and X is an anion. The coordination polymer [Mn3O(O2CCH3)6]O2CCH3.HO2CCH3 has been crystallized.[2]

Preparation

It is usually used as the dihydrate, although the anhydrous form is also used in some situations. The dihydrate is prepared by combining potassium permanganate and manganese(II) acetate in acetic acid.[3] Addition of acetic anhydride to the reaction produces the anhydrous form.[1][2] It is also synthesized by electrochemical method starting from Mn(OAc)2.[4]

Use in organic synthesis

Manganese triacetate has been used as a one-electron oxidant. It can oxidize alkenes via addition of acetic acid to form lactones.[3]

Manganese acetate lactone generic.png

This process is thought to proceed via the formation of a •CH2CO2H radical intermediate, which then reacts with the alkene, followed by additional oxidation steps and finally ring closure.[1] When the alkene is not symmetric, the major product depends on the nature of the alkene, and is consistent with initial formation of the more stable radical (among the two carbons of the alkene) followed by ring closure onto the more stable conformation of the intermediate.[5]

When reacted with enones, the carbon on the other side of the carbonyl reacts rather than the alkene portion, leading to α'-acetoxy enones.[6] In this process, the carbon next to the carbonyl is oxidized by the manganese, followed by transfer of acetate from the manganese to it.[7] It can similarly oxidize β-ketoesters at the α carbon, and this intermediate can react with various other structures, including halides and alkenes (see: manganese-mediated coupling reactions). One extension of this idea is the cyclization of the ketoester portion of the molecule with an alkene elsewhere in the same structure.[8]


See also

References

  1. ^ a b c Snider, Barry B. (2001). "Manganese(III) Acetate". Encyclopedia of Reagents for Organic Synthesis. Wiley. doi:10.1002/047084289X.rm018. ISBN 0471936235.
  2. ^ a b Hessel, L. W.; Romers, C. (1969). "The Crystal Structure of "Anhydrous Manganic Acetate"". Recueil des Travaux Chimiques des Pays-Bas. 88 (5): 545–552. doi:10.1002/recl.19690880505.
  3. ^ a b E. I. Heiba, R. M. Dessau, A. L. Williams, P. G. Rodewald (1983). "Substituted γ-butyrolactones From Carboxylic Acids And Olefins: γ-(n-octyl)-γ-butyrolactone". Org. Synth. 61: 22. doi:10.15227/orgsyn.061.0022.
  4. ^ Yılmaz, M.; Yılmaz, E. V. B.; Pekel, A. T. (2011). "Radical Cyclization of Fluorinated 1,3-Dicarbonyl Compounds with Dienes Using Manganese(III) Acetate and Synthesis of Fluoroacylated 4,5-Dihydrofurans". Helv. Chim. Acta. 94 (11): 2027–2038. doi:10.1002/hlca.201100105.
  5. ^ Fristad, W. E.; Peterson, J. R. (1985). "Manganese(III)-mediated γ-lactone annulation". J. Org. Chem. 50 (1): 10–18. doi:10.1021/jo00201a003.
  6. ^ Dunlap, Norma K.; Sabol, Mark R.; Watt, David S. (1984). "Oxidation of enones to α'-acetoxyenones using manganese triacetate". Tetrahedron Letters. 25: 5839–5842. doi:10.1016/S0040-4039(01)81699-3.
  7. ^ Williams, G. J.; Hunter, N. R. (1976). "Situselective α'-acetoxylationof some α,β-enones by manganic acetate oxidation". Can. J. Chem. 54 (24): 3830–3832. doi:10.1139/v76-550.
  8. ^ Snider, B. B.; Patricia, J. J.; Kates, S. A. (1988). "Mechanism of manganese(III)-based oxidation of β-keto esters". J. Org. Chem. 53 (10): 2137–2141. doi:10.1021/jo00245a001.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.