Wikipedia

Basic beryllium acetate

Basic beryllium acetate
Beacetate.png
Names
Systematic IUPAC name
Hexakis(μ-acetato)-μ(sup 4)-oxotetraberyllium
Other names
Beryllium oxyacetate
Beryllium oxide acetate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.038.881 Edit this at Wikidata
EC Number
  • 242-785-4
UNII
CompTox Dashboard (EPA)
Properties
C
12
H
18
Be
4
O
13
Molar mass 406.3122 g/mol
Appearance colorless
Melting point 285 °C (545 °F; 558 K)
Boiling point 330 °C (626 °F; 603 K)
Solubility in chloroform soluble
Hazards
Main hazards highly toxic
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.002 mg/m3
C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be)[1]
REL (Recommended)
Ca C 0.0005 mg/m3 (as Be)[1]
IDLH (Immediate danger)
Ca [4 mg/m3 (as Be)][1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Basic beryllium acetate is the chemical compound with the formula Be4O(O2CCH3)6. This compound adopts a distinctive structure, but it has no applications and has been only lightly studied. It is a colourless solid that is soluble in organic solvents.

Preparation

It can be prepared by treating basic beryllium carbonate with hot acetic acid.

2 Be
2
CO
3
(OH)
2
+ 6 AcOH → Be
4
O(AcO)
6
+ 5 H
2
O
+ 2 CO
2

Basic beryllium acetate is insoluble in water but soluble in chloroform, consistent with it being nonpolar. It melts and sublimes in a vacuum without decomposition.[2]

Structure

"Basic acetates" consist of an ensemble of metal centres bound to a central oxide ion, and a collection of acetate ligands. Basic beryllium acetate has a tetrahedral Be4O6+ core with acetates (CH3CO2) spanning each of the pairs of Be2+ centres.[3][4] It consists of interlocking six-membered Be2O3C rings. The structure is relevant to its considerable stability (the compound is distillable at 330 °C).

Schematic structure of basic beryllium acetate

Uses

The solubility of the salt in organic solvents (chloroform) is useful to extract and purify beryllium rich fractions for many purposes. Basic beryllium acetate single crystals can easily be grown and are helpful to align x-ray diffractometers and also as a reference in protein crystallography.

See also

References

  1. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ Moeller, T. (1950). "Basic Beryllium Derivatives of Organic Acids". In Audrieth, L. F. (ed.). Inorganic Syntheses, Volume 3. Inorganic Syntheses. John Wiley & Sons. pp. 4–9. doi:10.1002/9780470132340.ch2. ISBN 978-0-470-13234-0.
  3. ^ Bragg, W. H. (1923). "Crystal Structure of Basic Beryllium Acetate". Nature. 111 (2790): 532. Bibcode:1923Natur.111..532B. doi:10.1038/111532a0.
  4. ^ Pauling, L.; Sherman, J. (1934). "The Structure of the Carboxyl Group. II. The Crystal Structure of Basic Beryllium Acetate" (PDF). Proceedings of the National Academy of Sciences. 20 (6): 340–5. Bibcode:1934PNAS...20..340P. doi:10.1073/pnas.20.6.340. PMC 1076415. PMID 16587899.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.