Wikipedia

Long Josephson junction

Also found in: Acronyms.

In superconductivity, a long Josephson junction (LJJ) is a Josephson junction which has one or more dimensions longer than the Josephson penetration depth . This definition is not strict.

In terms of underlying model a short Josephson junction is characterized by the Josephson phase , which is only a function of time, but not of coordinates i.e. the Josephson junction is assumed to be point-like in space. In contrast, in a long Josephson junction the Josephson phase can be a function of one or two spatial coordinates, i.e., or .

Simple model: the sine-Gordon equation

The simplest and the most frequently used model which describes the dynamics of the Josephson phase in LJJ is the so-called perturbed sine-Gordon equation. For the case of 1D LJJ it looks like:

where subscripts and denote partial derivatives with respect to and , is the Josephson penetration depth, is the Josephson plasma frequency, is the so-called characteristic frequency and is the bias current density normalized to the critical current density . In the above equation, the r.h.s. is considered as perturbation.

Usually for theoretical studies one uses normalized sine-Gordon equation:

where spatial coordinate is normalized to the Josephson penetration depth and time is normalized to the inverse plasma frequency . The parameter is the dimensionless damping parameter ( is McCumber-Stewart parameter), and, finally, is a normalized bias current.

Important solutions

Here , and are the normalized coordinate, normalized time and normalized velocity. The physical velocity is normalized to the so-called Swihart velocity , which represent a typical unit of velocity and equal to the unit of space divided by unit of time .

References

  1. ^ M. Tinkham, Introduction to superconductivity, 2nd ed., Dover New York (1996).
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.