Wikipedia

Localization of a topological space

In mathematics, well-behaved topological spaces can be localized at primes, in a similar way to the localization of a ring at a prime. This construction was described by Dennis Sullivan in 1970 lecture notes that were finally published in (Sullivan 2005).

The reason to do this was in line with an idea of making topology, more precisely algebraic topology, more geometric. Localization of a space X is a geometric form of the algebraic device of choosing 'coefficients' in order to simplify the algebra, in a given problem. Instead of that, the localization can be applied to the space X, directly, giving a second space Y.

Definitions

We let A be a subring of the rational numbers, and let X be a simply connected CW complex. Then there is a simply connected CW complex Y together with a map from X to Y such that

  • Y is A-local; this means that all its homology groups are modules over A
  • The map from X to Y is universal for (homotopy classes of) maps from X to A-local CW complexes.

This space Y is unique up to homotopy equivalence, and is called the localization of X at A.

If A is the localization of Z at a prime p, then the space Y is called the localization of X at p

The map from X to Y induces isomorphisms from the A-localizations of the homology and homotopy groups of X to the homology and homotopy groups of Y.

See also

References

  • Adams, Frank (1978), Infinite loop spaces, Princeton, N.J.: Princeton University Press, pp. 74–95, ISBN 0-691-08206-5
  • Sullivan, Dennis P. (2005), Ranicki, Andrew (ed.), Geometric Topology: Localization, Periodicity and Galois Symmetry: The 1970 MIT Notes (PDF), K-Monographs in Mathematics, Dordrecht: Springer, ISBN 1-4020-3511-X
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.