Wikipedia

Local nonsatiation

Illustration of preferences that are locally nonsatiated but not strongly monotonic.

The property of local nonsatiation of consumer preferences states that for any bundle of goods there is always another bundle of goods arbitrarily close that is preferred to it.[1]

Formally, if X is the consumption set, then for any and every , there exists a such that and is preferred to .

Several things to note are:

  1. Local nonsatiation is implied by monotonicity of preferences. However, as the converse is not true, local nonsatiation is a weaker condition.
  2. There is no requirement that the preferred bundle y contain more of any good – hence, some goods can be "bads" and preferences can be non-monotone.
  3. It rules out the extreme case where all goods are "bads", since the point x = 0 would then be a bliss point.
  4. Local nonsatiation can only occur either if the consumption set is unbounded or open (in other words, it is not compact) or if x is on a section of a bounded consumption set sufficiently far away from the ends. Near the ends of a bounded set, there would necessarily be a bliss point where local nonsatiation does not hold.

Notes

  1. ^ Microeconomic Theory, by A. Mas-Colell, et al. ISBN 0-19-507340-1


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.