Wikipedia

Linear probability model

Also found in: Acronyms.

In statistics, a linear probability model is a special case of a binary regression model. Here the dependent variable for each observation takes values which are either 0 or 1. The probability of observing a 0 or 1 in any one case is treated as depending on one or more explanatory variables. For the "linear probability model", this relationship is a particularly simple one, and allows the model to be fitted by linear regression.

The model assumes that, for a binary outcome (Bernoulli trial), , and its associated vector of explanatory variables, ,[1]

For this model,

and hence the vector of parameters β can be estimated using least squares. This method of fitting would be inefficient,[1] and can be improved by adopting an iterative scheme based on weighted least squares,[1] in which the model from the previous iteration is used to supply estimates of the conditional variances, , which would vary between observations. This approach can be related to fitting the model by maximum likelihood.[1]

A drawback of this model is that, unless restrictions are placed on , the estimated coefficients can imply probabilities outside the unit interval . For this reason, models such as the logit model or the probit model are more commonly used.

See also

References

  1. ^ a b c d Cox, D. R. (1970). "Simple Regression". Analysis of Binary Data. London: Methuen. pp. 33–42. ISBN 0-416-10400-2.

Further reading

  • Aldrich, John H.; Nelson, Forrest D. (1984). "The Linear Probability Model". Linear Probability, Logit, and Probit Models. Sage. pp. 9–29. ISBN 0-8039-2133-0.
  • Amemiya, Takeshi (1985). "Qualitative Response Models". Advanced Econometrics. Oxford: Basil Blackwell. pp. 267–359. ISBN 0-631-13345-3.
  • Wooldridge, Jeffrey M. (2013). "A Binary Dependent Variable: The Linear Probability Model". Introductory Econometrics: A Modern Approach (5th international ed.). Mason, OH: South-Western. pp. 238–243. ISBN 978-1-111-53439-4.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.