Wikipedia

Limits of integration

Also found in: Encyclopedia.

In calculus and mathematical analysis the limits of integration of the integral

of a Riemann integrable function f defined on a closed and bounded [interval] are the real numbers and . The region that is bounded can be seen as the area inside and .

For example, the function is bounded on the interval

with the limits of integration being and .[1]

Integration by Substitution (U-Substitution)

In Integration by substitution, the limits of integration will change due to the new function being integrated. With the function that is being derived, and are solved for . In general,

where and . Thus, and will be solved in terms of ; the lower bound is and the upper bound is .

For example,

where and . Thus, and . Hence, the new limits of integration are and .[2]

The same applies for other substitutions.

Improper integrals

Limits of integration can also be defined for improper integrals, with the limits of integration of both

and

again being a and b. For an improper integral

or

the limits of integration are a and ∞, or −∞ and b, respectively.[3]

Definite Integrals

If , then

.[4]

See also

References

  1. ^ "31.5 Setting up Correct Limits of Integration". math.mit.edu. Retrieved 2019-12-02.
  2. ^ "��-substitution". Khan Academy. Retrieved 2019-12-02.
  3. ^ "Calculus II - Improper Integrals". tutorial.math.lamar.edu. Retrieved 2019-12-02.
  4. ^ Weisstein, Eric W. "Definite Integral". mathworld.wolfram.com. Retrieved 2019-12-02.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.