A leap year starting on Friday is any year with 366 days (i.e. it includes 29 February) that begins on Friday 1 January and ends on Saturday 31 December. Its dominical letters hence are CB. The most recent year of such kind was 2016 and the next one will be 2044 in the Gregorian calendar[1] or, likewise, 2000 and 2028 in the obsolete Julian calendar. Any leap year that starts on Tuesday, Friday or Saturday has only one Friday the 13th; the only Friday the 13th in this leap year occurs in May. Common years starting on Saturday share this characteristic. In this leap year, the leap day, U.S. Independence Day, and Halloween are on a Monday, Thanksgiving is on November 24 and Christmas is on a Sunday.
Calendars
| Calendar for any leap year starting on Friday, presented as common in many English-speaking areas |
| | January | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | | | 01 | 02 | | 03 | 04 | 05 | 06 | 07 | 08 | 09 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | | | | | February | | | Su | Mo | Tu | We | Th | Fr | Sa | | 01 | 02 | 03 | 04 | 05 | 06 | | 07 | 08 | 09 | 10 | 11 | 12 | 13 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 28 | 29 | | | | | | | | | March | | | Su | Mo | Tu | We | Th | Fr | Sa | | | 01 | 02 | 03 | 04 | 05 | | 06 | 07 | 08 | 09 | 10 | 11 | 12 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 27 | 28 | 29 | 30 | 31 | | | | | | | April | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | | | 01 | 02 | | 03 | 04 | 05 | 06 | 07 | 08 | 09 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | |
| | May | | | Su | Mo | Tu | We | Th | Fr | Sa | | 01 | 02 | 03 | 04 | 05 | 06 | 07 | | 08 | 09 | 10 | 11 | 12 | 13 | 14 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | 29 | 30 | 31 | | | | | | | June | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | 01 | 02 | 03 | 04 | | 05 | 06 | 07 | 08 | 09 | 10 | 11 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 26 | 27 | 28 | 29 | 30 | | | | | | | | July | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | | | 01 | 02 | | 03 | 04 | 05 | 06 | 07 | 08 | 09 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | | | | | August | | | Su | Mo | Tu | We | Th | Fr | Sa | | 01 | 02 | 03 | 04 | 05 | 06 | | 07 | 08 | 09 | 10 | 11 | 12 | 13 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 28 | 29 | 30 | 31 | | | | |
| | September | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | | 01 | 02 | 03 | | 04 | 05 | 06 | 07 | 08 | 09 | 10 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 25 | 26 | 27 | 28 | 29 | 30 | | | | | | | October | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | | | | 01 | | 02 | 03 | 04 | 05 | 06 | 07 | 08 | | 09 | 10 | 11 | 12 | 13 | 14 | 15 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 30 | 31 | | | | | November | | | Su | Mo | Tu | We | Th | Fr | Sa | | | 01 | 02 | 03 | 04 | 05 | | 06 | 07 | 08 | 09 | 10 | 11 | 12 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 27 | 28 | 29 | 30 | | | | | | | | December | | | Su | Mo | Tu | We | Th | Fr | Sa | | | | | 01 | 02 | 03 | | 04 | 05 | 06 | 07 | 08 | 09 | 10 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | | |
| ISO 8601-conformant calendar with week numbers for any leap year starting on Friday (dominical letter CB) |
| | January | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 53 | | | | | 01 | 02 | 03 | | 01 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | | 02 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 03 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 04 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | | | | | | February | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 05 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | | 06 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | | 07 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 08 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | 09 | 29 | | | | | | | | | | March | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 09 | | 01 | 02 | 03 | 04 | 05 | 06 | | 10 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | | 11 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 12 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 13 | 28 | 29 | 30 | 31 | | | | | | | | April | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 13 | | | | | 01 | 02 | 03 | | 14 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | | 15 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 16 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 17 | 25 | 26 | 27 | 28 | 29 | 30 | | | | | |
| | May | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 17 | | | | | | | 01 | | 18 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | | 19 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | | 20 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 21 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 22 | 30 | 31 | | | | | June | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 22 | | | 01 | 02 | 03 | 04 | 05 | | 23 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | | 24 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 25 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 26 | 27 | 28 | 29 | 30 | | | | | | | | | July | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 26 | | | | | 01 | 02 | 03 | | 27 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | | 28 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 29 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 30 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | | | | | | August | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 31 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | | 32 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | | 33 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 34 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | 35 | 29 | 30 | 31 | | | | | |
| | September | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 35 | | | | 01 | 02 | 03 | 04 | | 36 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | | 37 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 38 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 39 | 26 | 27 | 28 | 29 | 30 | | | | | | | | | October | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 39 | | | | | | 01 | 02 | | 40 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | | 41 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 42 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 43 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 44 | 31 | | | | | November | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 44 | | 01 | 02 | 03 | 04 | 05 | 06 | | 45 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | | 46 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 47 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 48 | 28 | 29 | 30 | | | | | | | | | December | | | Wk | Mo | Tu | We | Th | Fr | Sa | Su | | 48 | | | | 01 | 02 | 03 | 04 | | 49 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | | 50 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 51 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 52 | 26 | 27 | 28 | 29 | 30 | 31 | | | | | |
Applicable years
Gregorian Calendar
Leap years that begin on Friday, along with those that start on Sunday, occur most frequently: 15 out of the 97 (≈ 15.46%) total leap years in a 400-year cycle of the Gregorian calendar. Thus, the overall occurrence is thus 3.75% (15 out of 400).
Gregorian year types per leap cycle by Dominical letter (DL)[2] and Doomsday (DD) | Year starts | | Common years | | Leap years |
| 1 Jan | Count | Ratio | 31 Dec | DL | DD | Count | Ratio | 31 Dec | DL | DD | Count | Ratio |
| Sun | 58 | 14.50 % | Sun | A | Tue | 43 | 10.75 % | Mon | AG | Wed | 15 | 03.75 % |
| Sat | 56 | 14.00 % | Sat | B | Mon | 43 | 10.75 % | Sun | BA | Tue | 13 | 03.25 % |
| Fri | 58 | 14.50 % | Fri | C | Sun | 43 | 10.75 % | Sat | CB | Mon | 15 | 03.75 % |
| Thu | 57 | 14.25 % | Thu | D | Sat | 44 | 11.00 % | Fri | DC | Sun | 13 | 03.25 % |
| Wed | 57 | 14.25 % | Wed | E | Fri | 43 | 10.75 % | Thu | ED | Sat | 14 | 03.50 % |
| Tue | 58 | 14.50 % | Tue | F | Thu | 44 | 11.00 % | Wed | FE | Fri | 14 | 03.50 % |
| Mon | 56 | 14.00 % | Mon | G | Wed | 43 | 10.75 % | Tue | GF | Thu | 13 | 03.25 % |
| ∑ | 400 | 100.0 % | | 303 | 75.75 % | | 97 | 24.25 % |
Julian Calendar
Like all leap year types, the one starting with 1 January on a Friday occurs exactly once in a 28-year cycle in the Julian calendar, i.e. in 3.57% of years. As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1).
References