Wikipedia

NP-intermediate

(redirected from Ladner's theorem)

In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner,[1] is a result asserting that, if P ≠ NP, then NPI is not empty; that is, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty.

Under the assumption that P ≠ NP, Ladner explicitly constructs a problem in NPI, although this problem is artificial and otherwise uninteresting. It is an open question whether any "natural" problem has the same property: Schaefer's dichotomy theorem provides conditions under which classes of constrained Boolean satisfiability problems cannot be in NPI.[2][3] Some problems that are considered good candidates for being NP-intermediate are the graph isomorphism problem, factoring, and computing the discrete logarithm.[4]

List of problems that might be NP-intermediate[4]

Algebra and number theory

  • Factoring integers
  • Discrete Log Problem and others related to cryptographic assumptions
  • Isomorphism problems: Group isomorphism problem, Group automorphism, Ring isomorphism, Ring automorphism
  • Numbers in boxes problems[5]
  • The linear divisibility problem[6]

Boolean logic

  • Intersecting Monotone SAT[7]
  • Minimum Circuit Size Problem[8][9]
  • Monotone self-duality[10]

Computational geometry and computational topology

  • Computing the rotation distance[11] between two binary trees or the flip distance between two triangulations of the same convex polygon
  • The turnpike problem[12] of reconstructing points on line from their distance multiset
  • The cutting stock problem with a constant number of object lengths[13]
  • Knot triviality[14]
  • Deciding whether a given triangulated 3-manifold is a 3-sphere
  • Gap version of the closest vector in lattice problem[15]
  • Finding a simple closed quasigeodesic on a convex polyhedron[16]

Game theory

  • Determining winner in parity games[17]
  • Determining who has the highest chance of winning a stochastic game[17]
  • Agenda control for balanced single-elimination tournaments[18]

Graph algorithms

Miscellaneous

References

  1. ^ Ladner, Richard (1975). "On the Structure of Polynomial Time Reducibility". Journal of the ACM. 22 (1): 155–171. doi:10.1145/321864.321877. S2CID 14352974.
  2. ^ Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Marx, Maarten; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007). Finite model theory and its applications. Texts in Theoretical Computer Science. An EATCS Series. Berlin: Springer-Verlag. p. 348. ISBN 978-3-540-00428-8. Zbl 1133.03001.
  3. ^ Schaefer, Thomas J. (1978). "The complexity of satisfiability problems" (PDF). Proc. 10th Ann. ACM Symp. on Theory of Computing. pp. 216–226. MR 0521057.
  4. ^ a b "Problems Between P and NPC". Theoretical Computer Science Stack Exchange. 20 August 2011. Retrieved 1 November 2013.
  5. ^ http://blog.computationalcomplexity.org/2010/07/what-is-complexity-of-these-problems.html
  6. ^ https://cstheory.stackexchange.com/q/4331
  7. ^ https://cstheory.stackexchange.com/q/1739
  8. ^ https://cstheory.stackexchange.com/q/1745
  9. ^ Kabanets, Valentine; Cai, Jin-Yi (2000), "Circuit minimization problem", Proc. 32nd Symposium on Theory of Computing, Portland, Oregon, USA, pp. 73–79, doi:10.1145/335305.335314, S2CID 785205, ECCC TR99-045
  10. ^ https://cstheory.stackexchange.com/q/3950
  11. ^ Rotation distance, triangulations, and hyperbolic geometry
  12. ^ Reconstructing sets from interpoint distances
  13. ^ https://cstheory.stackexchange.com/q/3827
  14. ^ https://cstheory.stackexchange.com/q/1106
  15. ^ https://cstheory.stackexchange.com/q/7806
  16. ^ Demaine, Erik D.; O'Rourke, Joseph (2007), "24 Geodesics: Lyusternik–Schnirelmann", Geometric folding algorithms: Linkages, origami, polyhedra, Cambridge: Cambridge University Press, pp. 372–375, doi:10.1017/CBO9780511735172, ISBN 978-0-521-71522-5, MR 2354878.
  17. ^ a b http://kintali.wordpress.com/2010/06/06/np-intersect-conp/
  18. ^ https://cstheory.stackexchange.com/q/460
  19. ^ Approximability of the Minimum Bisection Problem: An Algorithmic Challenge
  20. ^ https://cstheory.stackexchange.com/q/6384
  21. ^ Nishimura, N.; Ragde, P.; Thilikos, D.M. (2002), "On graph powers for leaf-labeled trees", Journal of Algorithms, 42: 69–108, doi:10.1006/jagm.2001.1195.
  22. ^ Fellows, Michael R.; Rosamond, Frances A.; Rotics, Udi; Szeider, Stefan (2009), "Clique-width is NP-complete", SIAM Journal on Discrete Mathematics, 23 (2): 909–939, doi:10.1137/070687256, MR 2519936.
  23. ^ Gassner, Elisabeth; Jünger, Michael; Percan, Merijam; Schaefer, Marcus; Schulz, Michael (2006), "Simultaneous graph embeddings with fixed edges", Graph-Theoretic Concepts in Computer Science: 32nd International Workshop, WG 2006, Bergen, Norway, June 22-24, 2006, Revised Papers (PDF), Lecture Notes in Computer Science, 4271, Berlin: Springer, pp. 325–335, doi:10.1007/11917496_29, MR 2290741.
  24. ^ On total functions, existence theorems and computational complexity
  25. ^ http://www.openproblemgarden.org/?q=op/theoretical_computer_science/subset_sums_equality
  26. ^ Papadimitriou, Christos H.; Yannakakis, Mihalis (1996), "On limited nondeterminism and the complexity of the V-C dimension", Journal of Computer and System Sciences, 53 (2, part 1): 161–170, doi:10.1006/jcss.1996.0058, MR 1418886

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.