Wikipedia

Inclusion map

A is a subset of B, and B is a superset of A.

In mathematics, if A is a subset of B, then the inclusion map (also inclusion function, insertion,[1] or canonical injection) is the function ι that sends each element x of A to x, treated as an element of B:

A "hooked arrow" (U+21AA RIGHTWARDS ARROW WITH HOOK)[2] is sometimes used in place of the function arrow above to denote an inclusion map; thus:

(However, some authors use this hooked arrow for any embedding.)

This and other analogous injective functions[3] from substructures are sometimes called natural injections.

Given any morphism f between objects X and Y, if there is an inclusion map into the domain ι : AX, then one can form the restriction f ι of f. In many instances, one can also construct a canonical inclusion into the codomain RY known as the range of f.

Applications of inclusion maps

Inclusion maps tend to be homomorphisms of algebraic structures; thus, such inclusion maps are embeddings. More precisely, given a substructure closed under some operations, the inclusion map will be an embedding for tautological reasons. For example, for some binary operation , to require that

is simply to say that is consistently computed in the sub-structure and the large structure. The case of a unary operation is similar; but one should also look at nullary operations, which pick out a constant element. Here the point is that closure means such constants must already be given in the substructure.

Inclusion maps are seen in algebraic topology where if A is a strong deformation retract of X, the inclusion map yields an isomorphism between all homotopy groups (that is, it is a homotopy equivalence).

Inclusion maps in geometry come in different kinds: for example embeddings of submanifolds. Contravariant objects (which is to say, objects that have pullbacks; these are called covariant in an older and unrelated terminology) such as differential forms restrict to submanifolds, giving a mapping in the other direction. Another example, more sophisticated, is that of affine schemes, for which the inclusions

and

may be different morphisms, where R is a commutative ring and I is an ideal of R.

See also

References

  1. ^ MacLane, S.; Birkhoff, G. (1967). Algebra. Providence, RI: AMS Chelsea Publishing. p. 5. ISBN 0-8218-1646-2. Note that “insertion” is a function SU and "inclusion" a relation SU; every inclusion relation gives rise to an insertion function.
  2. ^ "Arrows – Unicode" (PDF). Unicode Consortium. Retrieved 2017-02-07.
  3. ^ Chevalley, C. (1956). Fundamental Concepts of Algebra. New York, NY: Academic Press. p. 1. ISBN 0-12-172050-0.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.