Wikipedia

Hydrogenophilaceae

Also found in: Dictionary.
Hydrogenophilaceae
Scientific classification
Kingdom:
Bacteria
Phylum:
Class:
Hydrogenophilalia
Order:
Hydrogenophilales
Family:
Hydrogenophilaceae
Genera

Hydrogenophilus[1]
Tepidiphilus[1]

The Hydrogenophilaceae are a family of the Hydrogenophilalia, with two genera – Hydrogenophilus and Tepidiphilus. Like all "Proteobacteria", they are Gram-negative. All known species are thermophilic, growing around 50 °C and using molecular hydrogen or organic molecules as their source of electrons to support growth - some species are autotrophs.

The genus Thiobacillus was previously considered to be a member in this family but was reclassified into the order Nitrosomonadales at the same time that the Hydrogenophilales were removed from the Betaproteobacteria and the class Hydrogenophilalia was formed.[2]

Hydrogenophilus thermoluteolus is a facultative chemolithoautotroph originally isolated from a hot spring; however, it was detected 2004 in ice core samples retrieved from a depth around 3 km within the ice covering Lake Vostok in Antarctica.[3] The presence of DNA from (and potentially live cells of) thermophilic bacteria in the ice suggests that a geothermal system could exist beneath the cold water body of Lake Vostok, or simply that non-thermophilic strains of Hydrogenophilus exist and were present in the ice.

References

  1. ^ a b Parker, Charles Thomas; Wigley, Sarah; Garrity, George M (11 May 2009). "Taxonomic Abstract for the families". NamesforLife, LLC. doi:10.1601/tx.1868.
  2. ^ Boden R, Hutt LP, Rae AW (2017). "Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the "Proteobacteria", and four new families within the orders Nitrosomonadales and Rhodocyclales". Int J Syst Evol Microbiol. 67: 1191–1205. doi:10.1099/ijsem.0.001927. PMID 28581923.
  3. ^ Sergey A. Bulat; Irina A. Alekhina; Michel Blot; Jean-Robert Petit; Martine de Angelis; Dietmar Wagenbach; Vladimir Ya. Lipenkov; Lada P. Vasilyeva; Dominika M. Wloch; Dominique Raynaud; Valery V. Lukin (August 2004). "DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments". International Journal of Astrobiology. 3: 1–12. doi:10.1017/S1473550404001879. Retrieved 2011-01-29.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.