Wikipedia

Hough function

In applied mathematics, the Hough functions are the eigenfunctions of Laplace's tidal equations which govern fluid motion on a rotating sphere. As such, they are relevant in geophysics and meteorology where they form part of the solutions for atmospheric and ocean waves. These functions are named in honour of Sydney Samuel Hough.[1][2][3]

Each Hough mode is a function of latitude and may be expressed as an infinite sum of associated Legendre polynomials; the functions are orthogonal over the sphere in the continuous case. Thus they can also be thought of as a generalized Fourier series in which the basis functions are the normal modes of an atmosphere at rest.

References

  1. ^ Cartwright, David Edgar (2000). Tides: A Scientific History. Cambridge University Press. pp. 85–87.
  2. ^ Hough, S. S. (1897). On the Application of Harmonic Analysis to the Dynamical Theory of the Tides. Part I. On Laplace's' Oscillations of the First Species, and on the Dynamics of Ocean Currents. Proceedings of the Royal Society of London, vol. 61, 201–257.
  3. ^ Hough, S. S. (1898). On the application of harmonic analysis to the dynamical theory of the tides. Part II. On the general integration of Laplace's dynamical equations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 191, 139–185.

See also

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.