Wikipedia

Higher residuosity problem

In cryptography, most public key cryptosystems are founded on problems that are believed to be intractable. The higher residuosity problem (also called the n th-residuosity problem[1]) is one such problem. This problem is easier to solve than integer factorization, so the assumption that this problem is hard to solve is stronger than the assumption that integer factorization is hard.

Mathematical background

If n is an integer, then the integers modulo n form a ring. If n=pq where p and q are primes, then the Chinese remainder theorem tells us that

The group of units of any ring form a group, and the group of units in is traditionally denoted .

From the isomorphism above, we have

as an isomorphism of groups. Since p and q were assumed to be prime, the groups and are cyclic of orders p-1 and q-1 respectively. If d is a divisor of p-1, then the set of dth powers in form a subgroup of index d. If gcd(d,q-1) = 1, then every element in is a dth power, so the set of dth powers in is also a subgroup of index d. In general, if gcd(d,q-1) = g, then there are (q-1)/(g) dth powers in , so the set of dth powers in has index dg. This is most commonly seen when d=2, and we are considering the subgroup of quadratic residues, it is well known that exactly one quarter of the elements in are quadratic residues (when n is the product of exactly two primes, as it is here).

The important point is that for any divisor d of p-1 (or q-1) the set of dth powers forms a subgroup of

Problem statement

Given an integer n = pq where p and q are unknown, an integer d such that d divides p-1, and an integer x < n, it is infeasible to determine whether x is a dth power (equivalently dth residue) modulo n.

Notice that if p and q are known it is easy to determine whether x is a dth residue modulo n because x will be a dth residue modulo p if and only if

When d=2, this is called the quadratic residuosity problem.

Applications

The semantic security of the Benaloh cryptosystem and the Naccache-Stern cryptosystem rests on the intractability of this problem.

References

  1. ^ Zhang, Yuliang; Tsutomu Matsumoto; Hideki Imai (1988). "Cryptographic Applications of th-Residuosity Problem with an Odd Integer". Transactions of the IEICE. 71 (8): 759–767. CiteSeerX 10.1.1.137.8511.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.