Wikipedia

Feynman slash notation

In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation[1]). If A is a covariant vector (i.e., a 1-form),

using the Einstein summation notation where γ are the gamma matrices.

Identities

Using the anticommutators of the gamma matrices, one can show that for any and ,

.

where is the identity matrix in four dimensions.

In particular,

Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,

where

is the Levi-Civita symbol.

With four-momentum

Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,

as well as the definition of four-momentum,

we see explicitly that

Similar results hold in other bases, such as the Weyl basis.

See also

References

  1. ^ Weinberg, Steven (1995), The Quantum Theory of Fields, 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.