Wikipedia

Edge-transitive graph

Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive, t ≥ 2 skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

In the mathematical field of graph theory, an edge-transitive graph is a graph G such that, given any two edges e1 and e2 of G, there is an automorphism of G that maps e1 to e2.[1]

In other words, a graph is edge-transitive if its automorphism group acts transitively on its edges.

Examples and properties

The Gray graph is edge-transitive and regular, but not vertex-transitive.

Edge-transitive graphs include any complete bipartite graph , and any symmetric graph, such as the vertices and edges of the cube.[1] Symmetric graphs are also vertex-transitive (if they are connected), but in general edge-transitive graphs need not be vertex-transitive. The Gray graph is an example of a graph which is edge-transitive but not vertex-transitive. All such graphs are bipartite,[1] and hence can be colored with only two colors.

An edge-transitive graph that is also regular, but not vertex-transitive, is called semi-symmetric. The Gray graph again provides an example. Every edge-transitive graph that is not vertex-transitive must be bipartite and either semi-symmetric or biregular.[2]

The vertex connectivity of an edge-transitive graph always equals its minimum degree.[3]

Marston Conder has compiled a Complete list of all connected edge-transitive graphs on up to 47 vertices and a Complete list of all connected edge-transitive bipartite graphs on up to 63 vertices.

See also

References

  1. ^ a b c Biggs, Norman (1993). Algebraic Graph Theory (2nd ed.). Cambridge: Cambridge University Press. p. 118. ISBN 0-521-45897-8.
  2. ^ Lauri, Josef; Scapellato, Raffaele (2003), Topics in Graph Automorphisms and Reconstruction, London Mathematical Society Student Texts, Cambridge University Press, pp. 20–21, ISBN 9780521529037.
  3. ^ Watkins, Mark E. (1970), "Connectivity of transitive graphs", Journal of Combinatorial Theory, 8: 23–29, doi:10.1016/S0021-9800(70)80005-9, MR 0266804

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.