Wikipedia

Dense-in-itself

In general topology, a subset of a topological space is said to be dense-in-itself[1][2] or crowded[3][4] if has no isolated point. Equivalently, is dense-in-itself if every point of is a limit point of . Thus is dense-in-itself if and only if , where is the derived set of .

A dense-in-itself closed set is called a perfect set. (In other words, a perfect set is a closed set without isolated point.)

The notion of dense set is unrelated to dense-in-itself. This can sometimes be confusing, as "X is dense in X" (always true) is not the same as "X is dense-in-itself" (no isolated point).

Examples

A simple example of a set which is dense-in-itself but not closed (and hence not a perfect set) is the subset of irrational numbers (considered as a subset of the real numbers). This set is dense-in-itself because every neighborhood of an irrational number contains at least one other irrational number . On the other hand, the set of irrationals is not closed because every rational number lies in its closure. For similar reasons, the set of rational numbers (also considered as a subset of the real numbers) is also dense-in-itself but not closed.

The above examples, the irrationals and the rationals, are also dense sets in their topological space, namely . As an example that is dense-in-itself but not dense in its topological space, consider . This set is not dense in but is dense-in-itself.

Properties

  • The union of any family of dense-in-itself subsets of a space X is dense-in-itself.[5]
  • In a topological space, the intersection of an open set and a dense-in-itself set is dense-in-itself.
  • In a topological space, the closure of a dense-it-itself set is a perfect set.[6]

See also

Notes

  1. ^ Steen & Seebach, p. 6
  2. ^ Engelking, p. 25
  3. ^ http://www.topo.auburn.edu/tp/reprints/v21/tp21008.pdf
  4. ^ https://www.researchgate.net/publication/228597275_a-Scattered_spaces_II
  5. ^ Engelking, 1.7.10, p. 59
  6. ^ Kuratowski, p. 77

References

  • Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Berlin. ISBN 3-88538-006-4.
  • Kuratowski, K. (1966). Topology Vol. I. Academic Press. ISBN 012429202X.
  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1978). Counterexamples in Topology (Dover reprint of 1978 ed.). Berlin, New York: Springer-Verlag. ISBN 978-0-486-68735-3. MR 0507446.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.