Wikipedia

Cyclic module

In mathematics, more specifically in ring theory, a cyclic module or monogenous module[1] is a module over a ring that is generated by one element. The concept is analogous to cyclic group, that is, a group that is generated by one element.

Definition

A left R-module M is called cyclic if M can be generated by a single element i.e. M = (x) = Rx = {rx | rR} for some x in M. Similarly, a right R-module N is cyclic if N = yR for some yN.

Examples

  • 2Z as a Z-module is a cyclic module.
  • In fact, every cyclic group is a cyclic Z-module.
  • Every simple R-module M is a cyclic module since the submodule generated by any non-zero element x of M is necessarily the whole module M. In general, a module is simple if and only if it is nonzero and is generated by each of its nonzero elements.[2]
  • If the ring R is considered as a left module over itself, then its cyclic submodules are exactly its left principal ideals as a ring. The same holds for R as a right R-module, mutatis mutandis.
  • If R is F[x], the ring of polynomials over a field F, and V is an R-module which is also a finite-dimensional vector space over F, then the Jordan blocks of x acting on V are cyclic submodules. (The Jordan blocks are all isomorphic to F[x] / (xλ)n; there may also be other cyclic submodules with different annihilators; see below.)

Properties

  • Given a cyclic R-module M that is generated by x, there exists a canonical isomorphism between M and R / AnnR x, where AnnR x denotes the annihilator of x in R.
  • Every module is a sum of cyclic submodules.[3]

See also

  • Finitely generated module

References

  1. ^ Bourbaki, Algebra I: Chapters 1–3, p. 220
  2. ^ Anderson & Fuller, Just after Proposition 2.7.
  3. ^ Anderson & Fuller, Proposition 2.7.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.