Wikipedia

Continuous functional calculus

In mathematics, particularly in operator theory and C*-algebra theory, a continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

Theorem

Theorem. Let x be a normal element of a C*-algebra A with an identity element e. Then there is a unique mapping π : ff(x) defined for a continuous function f on the spectrum σ(x) of x, such that π is a unit-preserving morphism of C*-algebras and π(1) = e and π(id) = x, where id denotes the function zz on σ(x).[1]

The proof of this fact is almost immediate from the Gelfand representation: it suffices to assume A is the C*-algebra of continuous functions on some compact space X and define

Uniqueness follows from application of the Stone-Weierstrass theorem.

In particular, this implies that bounded normal operators on a Hilbert space have a continuous functional calculus.

See also

References

  1. ^ Theorem VII.1 p. 222 in Modern methods of mathematical physics, Vol. 1, Reed M., Simon B.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.