Wikipedia

Conic constant

Ten different conic sections which open to the right from a common intersection point, at which point they have a common radius of curvature
An illustration of various conic constants

In geometry, the conic constant (or Schwarzschild constant,[1] after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter K. The constant is given by

where e is the eccentricity of the conic section.

The equation for a conic section with apex at the origin and tangent to the y axis is

where R is the radius of curvature at x = 0.

This formulation is used in geometric optics to specify oblate elliptical (K > 0), spherical (K = 0), prolate elliptical (0 > K > −1), parabolic (K = −1), and hyperbolic (K < −1) lens and mirror surfaces. When the paraxial approximation is valid, the optical surface can be treated as a spherical surface with the same radius.

Some non-optical design references use the letter p as the conic constant. In these cases, p = K + 1.

References

  1. ^ Chan, L.; Tse, M.; Chim, M.; Wong, W.; Choi, C.; Yu, J.; Zhang, M.; Sung, J. (May 2005). Sasian, Jose M; Koshel, R. John; Juergens, Richard C (eds.). "The 100th birthday of the conic constant and Schwarzschild's revolutionary papers in optics". Proceedings of SPIE. Novel Optical Systems Design and Optimization VIII. 5875: 587501. doi:10.1117/12.635041. ISSN 0277-786X.
  • Smith, Warren J. (2008). Modern Optical Engineering, 4th ed. McGraw-Hill Professional. pp. 512–515. ISBN 978-0-07-147687-4.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.