Wikipedia

Computational learning theory

Also found in: Acronyms.

In computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms.[1]

Overview

Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples, including samples that have not been seen previously by the algorithm. The goal of the supervised learning algorithm is to optimize some measure of performance such as minimizing the number of mistakes made on new samples.

In addition to performance bounds, computational learning theory studies the time complexity and feasibility of learning. In computational learning theory, a computation is considered feasible if it can be done in polynomial time. There are two kinds of time complexity results:

  • Positive results – Showing that a certain class of functions is learnable in polynomial time.
  • Negative results – Showing that certain classes cannot be learned in polynomial time.

Negative results often rely on commonly believed, but yet unproven assumptions, such as:

  • Computational complexity – P ≠ NP (the P versus NP problem);
  • Cryptographic – One-way functions exist.

There are several different approaches to computational learning theory based on making different assumptions about the inference principles used to generalize from limited data. This includes different definitions of probability (see frequency probability, Bayesian probability) and different assumptions on the generation of samples. The different approaches include:

While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief networks.

See also

References

  1. ^ "ACL - Association for Computational Learning".

Surveys

  • Angluin, D. 1992. Computational learning theory: Survey and selected bibliography. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing (May 1992), pages 351–369. http://portal.acm.org/citation.cfm?id=129712.129746
  • D. Haussler. Probably approximately correct learning. In AAAI-90 Proceedings of the Eight National Conference on Artificial Intelligence, Boston, MA, pages 1101–1108. American Association for Artificial Intelligence, 1990. http://citeseer.ist.psu.edu/haussler90probably.html

VC dimension

Feature selection

Inductive inference

Optimal O notation learning

Negative results

Boosting (machine learning)

Occam Learning

Probably approximately correct learning

Error tolerance

Equivalence

  • D.Haussler, M.Kearns, N.Littlestone and M. Warmuth, Equivalence of models for polynomial learnability, Proc. 1st ACM Workshop on Computational Learning Theory, (1988) 42-55.
  • Pitt, L.; Warmuth, M. K. (1990). "Prediction-Preserving Reducibility". Journal of Computer and System Sciences. 41 (3): 430–467. doi:10.1016/0022-0000(90)90028-J.

A description of some of these publications is given at important publications in machine learning.

Distribution Learning Theory

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.