Wikipedia

Complex convexity

Complex convexity is a general term in complex geometry.

Definition

A set in is called -convex if its intersection with any complex line is contractible.[1]

Background

In complex geometry and analysis, the notion of convexity and its generalizations play an important role in understanding function behavior. Examples of classes of functions with a rich structure are, in addition to the convex functions, the subharmonic functions and the plurisubharmonic functions.

Geometrically, these classes of functions correspond to convex domains and pseudoconvex domains, but there are also other types of domains, for instance lineally convex domains which can be generalized using convex analysis.

A great deal is already known about these domains, but there remain some fascinating, unsolved problems. This theme is mainly theoretical, but there are computational aspects of the domains studied, and these computational aspects are certainly worthy of further study.

References

  1. ^ Andersson, Mats; Passare, Mikael; Sigurdsson, Ragnar (2004), Complex convexity and analytic functionals, Progress in Mathematics, 225, Birkhäuser Verlag, Basel, doi:10.1007/978-3-0348-7871-5, ISBN 3-7643-2420-1, MR 2060426.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.