Wikipedia

Comparability

Also found in: Dictionary, Financial, Encyclopedia.
Hasse diagram of the natural numbers, partially ordered by "xy if x divides y". The numbers 4 and 6 are incomparable, since neither divides the other.

In mathematics, any two elements x and y of a set P that is partially ordered by a binary relation ≤ are comparable when either xy or yx. If it is not the case that x and y are comparable, then they are called incomparable.

A totally ordered set is exactly a partially ordered set in which every pair of elements is comparable.

It follows immediately from the definitions of comparability and incomparability that both relations are symmetric, that is x is comparable to y if and only if y is comparable to x, and likewise for incomparability.

Notation

Comparability is sometimes denoted by the symbol , and incomparability by the symbol .[1] Thus, for any pair of elements x and y of a partially ordered set, exactly one of and is true.

Comparability graphs

The comparability graph of a partially ordered set P has as vertices the elements of P and has as edges precisely those pairs {x, y} of elements for which .[2]

Classification

When classifying mathematical objects (e.g., topological spaces), two criteria are said to be comparable when the objects that obey one criterion constitute a subset of the objects that obey the other, which is to say when they are comparable under the partial order ⊂. For example, the T1 and T2 criteria are comparable, while the T1 and sobriety criteria are not.

See also

References

"PlanetMath: partial order". Retrieved 6 April 2010.

  1. ^ Trotter, William T. (1992), Combinatorics and Partially Ordered Sets:Dimension Theory, Johns Hopkins Univ. Press, p. 3
  2. ^ Gilmore, P. C.; Hoffman, A. J. (1964), "A characterization of comparability graphs and of interval graphs", Canadian Journal of Mathematics, 16: 539–548, doi:10.4153/CJM-1964-055-5.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.