Wikipedia

Common reference string model

In cryptography, the common reference string (CRS) model captures the assumption that a trusted setup in which all involved parties get access to the same string crs taken from some distribution D exists. Schemes proven secure in the CRS model are secure given that the setup was performed correctly. The common reference string model is a generalization of the common random string model, in which D is the uniform distribution of bit strings. As stated in,[1] the CRS model is equivalent to the reference string model [2] and the public parameters model.[3]

The CRS model has applications in the study of non-interactive zero-knowledge proofs and universal composability.

References

  1. ^ Ran Canetti and Marc Fischlin; Universally Composable Commitments; Cryptology ePrint Archive: Report 2001/055 (link)
  2. ^ Marc Fischlin, Roger Fischlin: Efficient Non-malleable Commitment Schemes. CRYPTO 2000: 413-431
  3. ^ Ivan Damgård: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. EUROCRYPT 2000: 418-430
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.