Wikipedia

Collocation method

In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the given equation at the collocation points.

Ordinary differential equations

Suppose that the ordinary differential equation

is to be solved over the interval . Choose from 0 ≤ c1< c2< … < cn ≤ 1.

The corresponding (polynomial) collocation method approximates the solution y by the polynomial p of degree n which satisfies the initial condition , and the differential equation

at all collocation points for . This gives n + 1 conditions, which matches the n + 1 parameters needed to specify a polynomial of degree n.

All these collocation methods are in fact implicit Runge–Kutta methods. The coefficients ck in the Butcher tableau of a Runge–Kutta method are the collocation points. However, not all implicit Runge–Kutta methods are collocation methods. [1]

Example: The trapezoidal rule

Pick, as an example, the two collocation points c1 = 0 and c2 = 1 (so n = 2). The collocation conditions are

There are three conditions, so p should be a polynomial of degree 2. Write p in the form

to simplify the computations. Then the collocation conditions can be solved to give the coefficients

The collocation method is now given (implicitly) by

where y1 = p(t0 + h) is the approximate solution at t = t0 + h.

This method is known as the "trapezoidal rule" for differential equations. Indeed, this method can also be derived by rewriting the differential equation as

and approximating the integral on the right-hand side by the trapezoidal rule for integrals.

Other examples

The Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation points. The Gauss–Legendre method based on s points has order 2s.[2] All Gauss–Legendre methods are A-stable.[3]

In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the collocation points as weights.

Notes

  1. ^ Ascher & Petzold 1998; Iserles 1996, pp. 43–44
  2. ^ Iserles 1996, pp. 47
  3. ^ Iserles 1996, pp. 63

References

  • Ascher, Uri M.; Petzold, Linda R. (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-412-8.
  • Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.
  • Iserles, Arieh (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, ISBN 978-0-521-55655-2.
  • Wang, Yingwei; Chen, Suqin; Wu, Xionghua (2009), "A rational spectral collocation method for solving a class of parameterized singular perturbation problems", Journal of Computational and Applied Mathematics, 233 (10): 2652–2660, doi:10.1016/j.cam.2009.11.011.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.